Stuart M Holmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396483/publications.pdf

Version: 2024-02-01

201674 214800 2,396 83 27 47 citations h-index g-index papers 87 87 87 3335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high–temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2022, 641, 119868.	8.2	32
2	High-performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high-temperature proton exchange membrane fuel cells. Journal of Energy Chemistry, 2022, 64, 323-334.	12.9	36
3	The performance and durability of high-temperature proton exchange membrane fuel cells enhanced by single-layer graphene. Nano Energy, 2022, 93, 106829.	16.0	25
4	Utilization of 3D printed carbon gas diffusion layers in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 23393-23410.	7.1	16
5	Performance and Durability of HT-PEMFC Enhanced By One-Step Electrochemical Exfoliated Phosphonated Graphene Oxide. ECS Meeting Abstracts, 2022, MA2022-01, 628-628.	0.0	O
6	Single-Layer-Graphene and Electrochemical Exfoliated Graphene Oxide for HT-PEMFC. ECS Meeting Abstracts, 2022, MA2022-01, 1526-1526.	0.0	0
7	Manufacture and Performance of 3D Printed Carbonised Gas Diffusion Layers. ECS Meeting Abstracts, 2022, MA2022-01, 1433-1433.	0.0	O
8	(Digital Presentation) Durable Silica Nanosheets/Carbon Black Supported Catalyst for Proton Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1519-1519.	0.0	0
9	Using the ash of common water reeds as a silica source for producing high purity ZSM-5 zeolite microspheres. Microporous and Mesoporous Materials, 2021, 316, 110953.	4.4	17
10	Oleylamine Aging of PtNi Nanoparticles Giving Enhanced Functionality for the Oxygen Reduction Reaction. Nano Letters, 2021, 21, 3989-3996.	9.1	37
11	One step electrochemical exfoliation of natural graphite flakes into graphene oxide for polybenzimidazole composite membranes giving enhanced performance in high temperature fuel cells. Journal of Power Sources, 2021, 491, 229550.	7.8	24
12	A structured catalyst support combining electrochemically exfoliated graphene oxide and carbon black for enhanced performance and durability in low-temperature hydrogen fuel cells. Energy, 2021, 226, 120318.	8.8	20
13	Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 63, 393-429.	12.9	52
14	Lab-based X-ray micro-computed tomography coupled with machine-learning segmentation to investigate phosphoric acid leaching in high-temperature polymer electrolyte fuel cells. Journal of Power Sources, 2021, 509, 230347.	7.8	14
15	Water Cluster Characteristics in X-Ray Computed Tomography Gas Diffusion Layer Microstructures Using Numerical Simulations. ECS Meeting Abstracts, 2021, MA2021-02, 1008-1008.	0.0	O
16	Graphene-Based Materials for High Temperature Fuel Cell Applications. ECS Meeting Abstracts, 2021, MA2021-02, 1121-1121.	0.0	0
17	Improvement of Performance and Lifetime of Polybenzimidazole Membranes in High Temperature Fuel Cells by Incorporation of Muscovite. ECS Meeting Abstracts, 2021, MA2021-02, 1134-1134.	0.0	O
18	Synthesis of a high-temperature stable electrochemically exfoliated graphene. Carbon, 2020, 157, 681-692.	10.3	55

#	Article	IF	CITATIONS
19	Selective adsorption of ethane over ethylene on M(bdc)(ted)0.5 (M = Co, Cu, Ni, Zn) metal-organic frameworks (MOFs). Microporous and Mesoporous Materials, 2020, 292, 109724.	4.4	48
20	Properties and DMFC performance of nafion/mordenite composite membrane fabricated by solution-casting method with different solvent ratio. Energy, 2020, 190, 116451.	8.8	19
21	Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: lon-exchange and solidification. Journal of Water Process Engineering, 2020, 33, 101059.	5 . 6	38
22	Production of High-Quality Graphene Using a Novel Electrochemical Intercalation-Exfoliation Approach. ECS Meeting Abstracts, 2020, MA2020-01, 864-864.	0.0	0
23	Pore-Scale Performance Analysis of Ordered Microstructures As Gas Diffusion Layers in Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-01, 1610-1610.	0.0	1
24	Synthesis and Applications of High Quality Graphene Made By a Novel Electrochemical Exfoliation of Natural Graphite Flakes. ECS Meeting Abstracts, 2020, MA2020-01, 862-862.	0.0	0
25	Incorporation of Graphene and Graphene-Based Materials into Membranes As an Alternative Electrolyte Configuration for Low and High Temperature Polymeric Electrolyte Membranes Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-01, 1603-1603.	0.0	0
26	Synthesis of High-Quality Graphene Oxide Made By a Novel One-Step Electrochemical Exfoliation of Natural Graphite Flakes Based on a 3D-Printed Reactor. ECS Meeting Abstracts, 2020, MA2020-02, 1100-1100.	0.0	0
27	Nitrogen Doped Reduced Electrochemically Exfoliated Graphene Oxide Inserted Carbon Black As Novel Catalyst Support for the Hydrogen Fuel Cell. ECS Meeting Abstracts, 2020, MA2020-02, 2323-2323.	0.0	1
28	Production of High-Quality Graphene Using a Novel Electrochemical Intercalation-Exfoliation Approach. ECS Meeting Abstracts, 2020, MA2020-02, 1116-1116.	0.0	0
29	Incorporation of Graphene and Graphene-Based Materials into Membranes As an Alternative Electrolyte Configuration for Low and High Temperature Polymeric Electrolyte Membranes Fuel Cells ECS Meeting Abstracts, 2020, MA2020-02, 2247-2247.	0.0	0
30	Water Distribution in Fuel Cell Gas Channels Using a Mechanistic Discrete Particle Model. ECS Meeting Abstracts, 2020, MA2020-02, 2090-2090.	0.0	2
31	Improving the performance of direct methanol fuel cells by implementing multilayer membranes blended with cellulose nanocrystals. International Journal of Hydrogen Energy, 2019, 44, 30409-30419.	7.1	27
32	The use of a sucrose precursor to prepare a carbon membrane for the separation of hydrogen from methane. RSC Advances, 2019, 9, 10437-10444.	3.6	5
33	Single Layer 2D Crystals for Electrochemical Applications of Ion Exchange Membranes and Hydrogen Evolution Catalysts. Advanced Materials Interfaces, 2019, 6, 1801838.	3.7	25
34	Platinum Supported on Electrochemically-Exfoliated Graphene Oxide As a Catalyst for Improving the Performance of the Hydrogen Fuel Cell. ECS Meeting Abstracts, 2019, , .	0.0	0
35	Understanding the seeding mechanism of hierarchically porous zeolite/carbon composites. Microporous and Mesoporous Materials, 2018, 268, 109-116.	4.4	28
36	The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry, 2018, 61, 124-132.	5.8	50

#	Article	IF	Citations
37	Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. International Journal of Hydrogen Energy, 2018, 43, 14675-14690.	7.1	19
38	2D Materials for the Electro Oxidation of Formic Acid. ECS Meeting Abstracts, 2018, , .	0.0	0
39	New Approach to Improve the DMFC Performance By Nafion-Functionalized Graphene Oxide Matrix Membranes Using the Electrochemical Exfoliation of Graphite As a Source of the Graphene Oxide. ECS Meeting Abstracts, 2018, , .	0.0	0
40	Synthesis of Graphene By Electrochemical Exfoliation of Graphite in Aqueous Solution. ECS Meeting Abstracts, 2018, , .	0.0	1
41	Monolayer Graphene Based Membrane to Replace Nafion in PEM Fuel Cells. ECS Meeting Abstracts, 2018,	0.0	2
42	Optimum Membrane for Formic Acid Electro Oxidation. ECS Meeting Abstracts, 2018, , .	0.0	0
43	Polybenzimidazole Supported Monolayer Graphene Membrane for Inexpensive PEM Fuel Cells. ECS Meeting Abstracts, 2018, , .	0.0	0
44	Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance. Applied Surface Science, 2017, 421, 24-41.	6.1	37
45	Growth of Carbon Nanotubes on Electrospun Cellulose Fibers for High Performance Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A3220-A3228.	2.9	25
46	Enhanced performance based on a hybrid cathode backing layer using a biomass derived activated carbon framework for methanol fuel cells. Electrochimica Acta, 2017, 251, 51-59.	5.2	13
47	2D materials graphene and hBN boost DMFC performance. Fuel Cells Bulletin, 2017, 2017, 14.	0.1	4
48	2D Crystals Significantly Enhance the Performance of a Working Fuel Cell. Advanced Energy Materials, 2017, 7, 1601216.	19.5	53
49	Creating hierarchies promptly: Microwave-accelerated synthesis of ZSM-5 zeolites on macrocellular silicon carbide (SiC) foams. Chemical Engineering Journal, 2017, 312, 1-9.	12.7	73
50	Application of response surface methodology to optimize direct alcohol fuel cell power density for greener energy production. Journal of Cleaner Production, 2017, 142, 1309-1320.	9.3	48
51	Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies. Chemical Engineering Journal, 2017, 308, 476-491.	12.7	46
52	Surface modification of mordenite in Nafion composite membrane for direct ethanol fuel cell and its characterizations: Effect of types of silane coupling agent. Journal of Environmental Chemical Engineering, 2016, 4, 2637-2646.	6.7	14
53	Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. Journal of Hazardous Materials, 2016, 320, 241-251.	12.4	43
54	Electrochemically controlled ion exchange: proton ion exchange with sodium zeolite X and A. Journal of Solid State Electrochemistry, 2015, 19, 1985-1992.	2.5	13

#	Article	IF	Citations
55	The removal of caesium ions using supported clinoptilolite. Journal of Hazardous Materials, 2015, 289, 1-8.	12.4	23
56	A novel approach to fabricate zeolite membranes for pervaporation processes. Journal of Materials Chemistry A, 2015, 3, 9799-9806.	10.3	21
57	The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Applied Surface Science, 2015, 357, 696-703.	6.1	188
58	The effects of anodic treatment on the surface chemistry of a Graphite Intercalation Compound. Electrochimica Acta, 2014, 135, 568-577.	5.2	12
59	Supercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9983-9990.	8.0	183
60	Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanolfuel cells. RSC Advances, 2012, 2, 1669-1674.	3.6	29
61	The direct synthesis of pure zeolite-A using â€~virgin' Kaolin. RSC Advances, 2012, 2, 11491.	3.6	19
62	The direct conversion of impure natural kaolin into pure zeolite catalysts. Green Chemistry, 2011, 13, 1152.	9.0	51
63	Hierarchical structures based on natural carbons and zeolites. Journal of Materials Chemistry, 2011, 21, 16529.	6.7	7
64	Characterization and fuel cell performance analysis of polyvinylalcohol–mordenite mixed-matrix membranes for direct methanol fuel cell use. Electrochimica Acta, 2011, 56, 8446-8456.	5.2	22
65	Nafion $\hat{A}^{@}/m$ ordenite composite membranes for improved direct methanol fuel cell performance. Journal of Membrane Science, 2011, 369, 367-374.	8.2	46
66	Optimization of the Mechanical Performance of Bacterial Cellulose/Poly(<scp>l</scp> -lactic) Acid Composites. ACS Applied Materials & Samp; Interfaces, 2010, 2, 321-330.	8.0	101
67	Novel and modified materials for wastewater treatment applications. Journal of Materials Chemistry, 2008, 18, 2751.	6.7	108
68	Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite. Journal of Materials Chemistry, 2007, 17, 1804-1808.	6.7	21
69	A novel porous carbon based on diatomaceous earth. Chemical Communications, 2006, , 2662.	4.1	44
70	Synthesis and Evaluation of a Low Pressure Drop Structured Catalyst for Use in the Reactive Distillation Process. Industrial & Distillation Process. Industr	3.7	0
71	Electrochemically Controlled Ion Exchange: Proton Exchange with Sodium Zeolite Y. Angewandte Chemie - International Edition, 2005, 44, 3075-3078.	13.8	23
72	Encapsulation of metal particles within the wall structure of mesoporous carbons. Chemical Communications, 2005, , 1912.	4.1	24

#	Article	IF	CITATION
73	Size Selective and Volume Exclusion Effects on Ion Transfer at the Silicalite Modified Liquidâ 'Liquid Interface. Journal of Physical Chemistry B, 2005, 109, 19377-19384.	2.6	11
74	A novel approach to the elucidation of facilitated ion transfer mechanisms at the liquid/liquid interface. Electrochemistry Communications, 2004, 6, 294-298.	4.7	22
75	Potentiometry in aqueous solutions using zeolite filmsElectronic supplementary information (ESI) available: Additional figures. See http://www.rsc.org/suppdata/an/b3/b311868a/. Analyst, The, 2004, 129, 157.	3 . 5	14
76	Electrochemistry of Cytochromecat the Liquidâ^'Liquid Interface. Journal of Physical Chemistry B, 2002, 106, 12101-12103.	2.6	29
77	Non-aqueous potentiometry using zeolites. Analyst, The, 2001, 126, 733-735.	3.5	11
78	Zeolite-membrane modulation of simple and facilitated ion transfer. Analyst, The, 2001, 126, 1857-1860.	3 . 5	16
79	Acid sites in mesoporous materials: a DRIFTS study. Microporous and Mesoporous Materials, 2001, 44-45, 793-799.	4.4	31
80	Hierarchical Pore Structures through Diatom Zeolitization. Angewandte Chemie - International Edition, 2000, 39, 2707-2710.	13.8	215
81	Zeolitic rectification of electrochemical ion transfer. Journal of Electroanalytical Chemistry, 2000, 483, 144-149.	3.8	23
82	A Novel Method for the Growth of Silicalite Membranes on Stainless Steel Supports. Chemistry of Materials, 1999, 11, 3329-3332.	6.7	49
83	In situ FTIR study of the formation of MCM-41. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2025-2032.	1.7	90