Jeffrey E Gotts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delayed angiopoietinâ€2 blockade reduces influenzaâ€induced lung injury and improves survival in mice. Physiological Reports, 2021, 9, e15081.	1.7	2
2	The ex vivo perfused human lung is resistant to injury by high-dose <i>S. pneumoniae</i> bacteremia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L218-L227.	2.9	8
3	Treatment for severe acute respiratory distress syndrome from COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 433-434.	10.7	254
4	Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L717-L736.	2.9	24
5	What are the respiratory effects of e-cigarettes?. BMJ, The, 2019, 366, I5275.	6.0	309
6	High-power vaping injures the human lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L703-L704.	2.9	7
7	Precision medicine for cell therapy in acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2019, 7, e14.	10.7	2
8	Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respiratory Medicine,the, 2019, 7, 154-162.	10.7	443
9	Assessment of industry data on pulmonary and immunosuppressive effects of IQOS. Tobacco Control, 2018, 27, s20-s25.	3.2	50
10	Cigarette smoke exposure worsens acute lung injury in antibiotic-treated bacterial pneumonia in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L25-L40.	2.9	20
11	Possible hepatotoxicity of IQOS. Tobacco Control, 2018, 27, s39-s40.	3.2	37
12	Cigarette Smoke Exposure Worsens Endotoxin-Induced Lung Injury and Pulmonary Edema in Mice. Nicotine and Tobacco Research, 2017, 19, 1033-1039.	2.6	26
13	Pulmonary toxicity of e-cigarettes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L193-L206.	2.9	225
14	Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nature Cell Biology, 2017, 19, 904-914.	10.3	202
15	Reply to "Letter to the Editor: Pulmonary toxicity of electronic cigarettes: more doubts than certainties― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L966-L967.	2.9	5
16	Sepsis: pathophysiology and clinical management. BMJ, The, 2016, 353, i1585.	6.0	653
17	Persistent Pathology in Influenza-Infected Mouse Lungs. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 613-615.	2.9	63
18	Cathepsin L Helps to Defend Mice from Infection with Influenza A. PLoS ONE, 2016, 11, e0164501.	2.5	9

JEFFREY E GOTTS

#	Article	IF	CITATIONS
19	Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 2015, 517, 621-625.	27.8	562
20	Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L395-L406.	2.9	84
21	Endogenous and Exogenous Cell-Based Pathways for Recovery from Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 797-809.	2.1	7
22	Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Annals of Intensive Care, 2014, 4, 22.	4.6	53
23	Treating ARDS: new hope for a tough problem. Lancet Respiratory Medicine,the, 2014, 2, 84-85.	10.7	13
24	Cell Therapy for Lung Disease. Chest, 2013, 143, 1525-1527.	0.8	4
25	Mesenchymal Stem Cells and Acute Lung Injury. Critical Care Clinics, 2011, 27, 719-733.	2.6	80