Jeffrey T Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396047/publications.pdf Version: 2024-02-01

	9756	16127
17,610	73	124
citations	h-index	g-index
221	221	17380
docs citations	times ranked	citing authors
	citations 221	17,610 73 citations h-index 221 221

#	Article	IF	CITATIONS
1	Dynamic multinuclear sites formed by mobilized copper ions in NO <i> _x </i> selective catalytic reduction. Science, 2017, 357, 898-903.	6.0	667
2	Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. Journal of the American Chemical Society, 2016, 138, 6028-6048.	6.6	588
3	Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nature Communications, 2014, 5, 4885.	5.8	498
4	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	7.3	455
5	Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nature Communications, 2018, 9, 4454.	5.8	451
6	Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nature Communications, 2021, 12, 4587.	5.8	401
7	Size and Support Effects for the Water–Gas Shift Catalysis over Gold Nanoparticles Supported on Model Al ₂ O ₃ and TiO ₂ . Journal of the American Chemical Society, 2012, 134, 4700-4708.	6.6	380
8	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	7.3	321
9	Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cuâ€SZâ€13. Angewandte Chemie - International Edition, 2014, 53, 11828-11833.	7.2	305
10	Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chemical Science, 2013, 4, 806-813.	3.7	294
11	Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. Journal of Catalysis, 2014, 312, 87-97.	3.1	286
12	A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Communications, 2020, 11, 5283.	5.8	286
13	Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1977-1982.	6.6	273
14	Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nature Catalysis, 2018, 1, 349-355.	16.1	244
15	Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nature Materials, 2021, 20, 222-228.	13.3	239
16	Ensemble Effect in Bimetallic Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16635-16642.	6.6	238
17	Stabilizing High Metal Loadings of Thermally Stable Platinum Single Atoms on an Industrial Catalyst Support. ACS Catalysis, 2019, 9, 3978-3990.	5.5	233
18	Propylene Hydrogenation and Propane Dehydrogenation by a Single-Site Zn ²⁺ on Silica Catalyst. ACS Catalysis, 2014, 4, 1091-1098.	5.5	230

#	Article	IF	CITATIONS
19	Nanoceria-Supported Single-Atom Platinum Catalysts for Direct Methane Conversion. ACS Catalysis, 2018, 8, 4044-4048.	5.5	214
20	Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts. ACS Catalysis, 2018, 8, 503-515.	5.5	188
21	Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nature Communications, 2018, 9, 5258.	5.8	188
22	Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nature Catalysis, 2020, 3, 411-417.	16.1	186
23	On the Relation between Particle Morphology, Structure of the Metal-Support Interface, and Catalytic Properties of Pt/γ-Al2O3. Journal of Catalysis, 1996, 163, 294-305.	3.1	176
24	In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: application for rechargeable Li–O2 batteries. Energy and Environmental Science, 2013, 6, 519.	15.6	175
25	Continuous Electrical Conductivity Variation in M ₃ (Hexaiminotriphenylene) ₂ (M = Co, Ni, Cu) MOF Alloys. Journal of the American Chemical Society, 2020, 142, 12367-12373.	6.6	169
26	Selective propane dehydrogenation with single-site Coll on SiO2 by a non-redox mechanism. Journal of Catalysis, 2015, 322, 24-37.	3.1	168
27	Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects. ACS Catalysis, 2017, 7, 4173-4181.	5.5	168
28	Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion. Energy and Environmental Science, 2014, 7, 1382.	15.6	167
29	Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction. Journal of the American Chemical Society, 2016, 138, 1820-1823.	6.6	167
30	A fundamental study of platinum tetraammine impregnation of silica2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. Journal of Catalysis, 2004, 225, 203-212.	3.1	156
31	NO oxidation: A probe reaction on Cu-SSZ-13. Journal of Catalysis, 2014, 312, 179-190.	3.1	155
32	Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts. ACS Catalysis, 2016, 6, 5873-5886.	5.5	151
33	Single-Atom Alloy Pd–Ag Catalyst for Selective Hydrogenation of Acrolein. Journal of Physical Chemistry C, 2015, 119, 18140-18148.	1.5	150
34	Isolated Fe ^{II} on Silica As a Selective Propane Dehydrogenation Catalyst. ACS Catalysis, 2015, 5, 3494-3503.	5.5	144
35	A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 2015, 137, 13624-13631.	6.6	137
36	Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes. Journal of the American Chemical Society, 2014, 136, 924-926.	6.6	136

#	Article	IF	CITATIONS
37	In Situ Formed Pt ₃ Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions. Nano Letters, 2019, 19, 5102-5108.	4.5	133
38	Cleaner water using bimetallic nanoparticle catalysts. Journal of Chemical Technology and Biotechnology, 2009, 84, 158-166.	1.6	127
39	Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)Ni ^{II} Complexes. ACS Catalysis, 2015, 5, 6713-6718.	5.5	127
40	Genesis and Evolution of Surface Species during Pt Atomic Layer Deposition on Oxide Supports Characterized by in Situ XAFS Analysis and Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry C, 2010, 114, 9758-9771.	1.5	124
41	Carbon Nitrideâ€Based Ruthenium Single Atom Photocatalyst for CO ₂ Reduction to Methanol. Small, 2021, 17, e2006478.	5.2	124
42	Changes in Catalytic and Adsorptive Properties of 2 nm Pt ₃ Mn Nanoparticles by Subsurface Atoms. Journal of the American Chemical Society, 2018, 140, 14870-14877.	6.6	121
43	Pd–In intermetallic alloy nanoparticles: highly selective ethane dehydrogenation catalysts. Catalysis Science and Technology, 2016, 6, 6965-6976.	2.1	119
44	Structure and reactivity of Pt–In intermetallic alloy nanoparticles: Highly selective catalysts for ethane dehydrogenation. Catalysis Today, 2018, 299, 146-153.	2.2	119
45	Low absorption vitreous carbon reactors for operandoXAS: a case study on Cu/Zeolites for selective catalytic reduction of NO _x by NH ₃ . Physical Chemistry Chemical Physics, 2012, 14, 2229-2238.	1.3	116
46	Propane Dehydrogenation on Single-Site [PtZn4] Intermetallic Catalysts. CheM, 2021, 7, 387-405.	5.8	116
47	Strong Electronic Coupling of Molecular Sites to Graphitic Electrodes via Pyrazine Conjugation. Journal of the American Chemical Society, 2018, 140, 1004-1010.	6.6	111
48	Identification of a Pt ₃ Co Surface Intermetallic Alloy in Pt–Co Propane Dehydrogenation Catalysts. ACS Catalysis, 2019, 9, 5231-5244.	5.5	111
49	Mechanistic Study of CO ₂ Photoreduction with H ₂ O on Cu/TiO ₂ Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies. Journal of Physical Chemistry C, 2017, 121, 490-499.	1.5	107
50	Synthesis of Pt–Pd Core–Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene. Chemistry of Materials, 2012, 24, 3525-3533.	3.2	104
51	Plasmonic Ag@Ag3(PO4)1â^'x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation. Energy and Environmental Science, 2012, 5, 8917.	15.6	103
52	Methods for NH3 titration of BrÃ,nsted acid sites in Cu-zeolites that catalyze the selective catalytic reduction of NOx with NH3. Journal of Catalysis, 2014, 312, 26-36.	3.1	103
53	Single-Site Organozirconium Catalyst Embedded in a Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 15680-15683.	6.6	103
54	Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles. Topics in Catalysis, 2011, 54, 334-348.	1.3	101

#	Article	IF	CITATIONS
55	High-Capacitance Pseudocapacitors from Li ⁺ Ion Intercalation in Nonporous, Electrically Conductive 2D Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 2285-2292.	6.6	99
56	A comparison of N-containing carbon nanostructures (CN) and N-coordinated iron–carbon catalysts (FeNC) for the oxygen reduction reaction in acidic media. Journal of Catalysis, 2014, 317, 30-43.	3.1	98
57	Metallic Pt as active sites for the water–gas shift reaction on alkali-promoted supported catalysts. Journal of Catalysis, 2012, 286, 279-286.	3.1	97
58	NO Disproportionation at a Mononuclear Site-Isolated Fe ²⁺ Center in Fe ²⁺ -MOF-5. Journal of the American Chemical Society, 2015, 137, 7495-7501.	6.6	96
59	Enhancement of <i>m</i> -Cresol Hydrodeoxygenation Selectivity on Ni Catalysts by Surface Decoration of MoO _{<i>x</i>} Species. ACS Catalysis, 2019, 9, 7791-7800.	5.5	95
60	A multicentre-bonded [Znl]8 cluster with cubic aromaticity. Nature Communications, 2015, 6, 6331.	5.8	94
61	The Dynamic Nature of BrÃ,nsted Acid Sites in Cu–Zeolites During NOx Selective Catalytic Reduction: Quantification by Gas-Phase Ammonia Titration. Topics in Catalysis, 2015, 58, 424-434.	1.3	91
62	A Structural Mimic of Carbonic Anhydrase in a Metal-Organic Framework. CheM, 2018, 4, 2894-2901.	5.8	91
63	Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES. Catalysis Science and Technology, 2016, 6, 6339-6353.	2.1	90
64	A molecular cross-linking approach for hybrid metal oxides. Nature Materials, 2018, 17, 341-348.	13.3	90
65	Ethanol Conversion to Butadiene over Isolated Zinc and Yttrium Sites Grafted onto Dealuminated Beta Zeolite. Journal of the American Chemical Society, 2020, 142, 14674-14687.	6.6	90
66	Surface structural-chemical characterization of a single-site d ⁰ heterogeneous arene hydrogenation catalyst having 100% active sites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 413-418.	3.3	87
67	Reverse Water–Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles. Journal of the American Chemical Society, 2015, 137, 10317-10325.	6.6	87
68	Engineering catalyst supports to stabilize PdOx two-dimensional rafts for water-tolerant methane oxidation. Nature Catalysis, 2021, 4, 830-839.	16.1	86
69	Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: Effect of the Particle Size. ACS Catalysis, 2014, 4, 585-592.	5.5	83
70	Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores. Journal of the American Chemical Society, 2018, 140, 14244-14266.	6.6	83
71	Use of H ₂ S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media. ACS Catalysis, 2014, 4, 3454-3462.	5.5	81
72	Modifying structure-sensitive reactions by addition of Zn to Pd. Journal of Catalysis, 2014, 318, 75-84.	3.1	80

#	Article	IF	CITATIONS
73	An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts. Catalysis Science and Technology, 2012, 2, 461-470.	2.1	79
74	Labile Cu(I) Catalyst/Spectator Cu(II) Species in Copper-Catalyzed C–C Coupling Reaction: Operando IR, in Situ XANES/EXAFS Evidence and Kinetic Investigations. Journal of the American Chemical Society, 2013, 135, 488-493.	6.6	78
75	Bond breakage under pressure in a metal organic framework. Chemical Science, 2017, 8, 8004-8011.	3.7	77
76	Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst··ÂAcidic Oxide Surface Binding Geometry. Journal of the American Chemical Society, 2015, 137, 6770-6780.	6.6	76
77	Single-site zinc on silica catalysts for propylene hydrogenation and propane dehydrogenation: Synthesis and reactivity evaluation using an integrated atomic layer deposition-catalysis instrument. Journal of Catalysis, 2017, 345, 170-182.	3.1	76
78	Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. Physical Chemistry Chemical Physics, 2010, 12, 5678.	1.3	75
79	Stabilized Vanadium Catalyst for Olefin Polymerization by Site Isolation in a Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8135-8139.	7.2	73
80	Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nature Chemistry, 2020, 12, 284-293.	6.6	73
81	Designing Highly Efficient and Longâ€Term Durable Electrocatalyst for Oxygen Evolution by Coupling B and P into Amorphous Porous NiFeâ€Based Material. Small, 2019, 15, e1901020.	5.2	71
82	Lewis acid enhancement by juxtaposition with an onium ion: the case of a mercury stibonium complex. Chemical Science, 2012, 3, 1128.	3.7	69
83	Adsorbate-Induced Structural Changes in 1–3 nm Platinum Nanoparticles. Journal of the American Chemical Society, 2014, 136, 9320-9326.	6.6	69
84	Water–gas shift catalysis over transition metals supported on molybdenum carbide. Journal of Catalysis, 2015, 331, 162-171.	3.1	68
85	Structural evolution of an intermetallic Pd–Zn catalyst selective for propane dehydrogenation. Physical Chemistry Chemical Physics, 2015, 17, 28144-28153.	1.3	67
86	Selective hydrogenation of acrolein on supported silver catalysts: A kinetics study of particle size effects. Journal of Catalysis, 2013, 298, 18-26.	3.1	66
87	Compression-Induced Deformation of Individual Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137, 1750-1753.	6.6	66
88	Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations. ACS Catalysis, 2015, 5, 3752-3759.	5.5	66
89	Evidence for the Coordination–Insertion Mechanism of Ethene Dimerization at Nickel Cations Exchanged onto Beta Molecular Sieves. ACS Catalysis, 2018, 8, 11407-11422.	5.5	66
90	Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis. Chemical Science, 2015, 6, 4851-4854.	3.7	65

#	Article	IF	CITATIONS
91	Volcano-shape glycerol oxidation activity of palladium-decorated gold nanoparticles. Chemical Science, 2014, 5, 3715-3728.	3.7	64
92	Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-4I: A Single-Site Catalyst Prepared by Cation Exchange. Journal of the American Chemical Society, 2017, 139, 12664-12669.	6.6	63
93	Direct methane activation by atomically thin platinum nanolayers on two-dimensional metal carbides. Nature Catalysis, 2021, 4, 882-891.	16.1	63
94	Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization. Topics in Catalysis, 2012, 55, 53-69.	1.3	62
95	Highly Selective Heterogeneous Ethylene Dimerization with a Scalable and Chemically Robust MOF Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 6654-6661.	3.2	62
96	Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy Catalysts Based on Their Measured Electronic Structure. Topics in Catalysis, 2010, 53, 348-356.	1.3	60
97	Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. Journal of Catalysis, 2013, 298, 206-217.	3.1	60
98	Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts. Catalysis Today, 2011, 160, 96-102.	2.2	57
99	Selective Dimerization of Propylene with Ni-MFU-4 <i>l</i> . Organometallics, 2017, 36, 1681-1683.	1.1	55
100	Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li–O2 batteries. RSC Advances, 2013, 3, 8276.	1.7	54
101	The Nature of the Isolated Gallium Active Center for Propane Dehydrogenation on Ga/SiO2. Catalysis Letters, 2017, 147, 1252-1262.	1.4	54
102	Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO _x with ammonia. Reaction Chemistry and Engineering, 2017, 2, 168-179.	1.9	54
103	Copper-/Cobalt-Catalyzed Highly Selective Radical Dioxygenation of Alkenes. Organic Letters, 2015, 17, 3402-3405.	2.4	50
104	Intermetallic Compounds as an Alternative to Singleâ€atom Alloy Catalysts: Geometric and Electronic Structures from Advanced Xâ€ray Spectroscopies and Computational Studies. ChemCatChem, 2020, 12, 1325-1333.	1.8	50
105	A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology, 2022, 17, 629-636.	15.6	50
106	Surface Hexagonal Pt ₁ Sn ₁ Intermetallic on Pt Nanoparticles for Selective Propane Dehydrogenation. ACS Applied Materials & Interfaces, 2020, 12, 25903-25909.	4.0	49
107	Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction. Applied Catalysis A: General, 2019, 574, 122-131.	2.2	48
108	Speciation and kinetic study of iron promoted sugar conversion to 5-hydroxymethylfurfural (HMF) and levulinic acid (LA). Organic Chemistry Frontiers, 2015, 2, 1388-1396.	2.3	46

#	Article	IF	CITATIONS
109	Effect of Cobalt on Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: AP-XPS and XANES Studies. Journal of Physical Chemistry C, 2016, 120, 14631-14642.	1.5	46
110	Valorization of Shale Gas Condensate to Liquid Hydrocarbons through Catalytic Dehydrogenation and Oligomerization. Processes, 2018, 6, 139.	1.3	46
111	Molybdenum Oxide, Oxycarbide, and Carbide: Controlling the Dynamic Composition, Size, and Catalytic Activity of Zeolite-Supported Nanostructures. Journal of Physical Chemistry C, 2019, 123, 22281-22292.	1.5	46
112	Identification of Surface Structures in Pt ₃ Cr Intermetallic Nanocatalysts. Chemistry of Materials, 2019, 31, 1597-1609.	3.2	46
113	Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu-CHA zeolites. Journal of Catalysis, 2020, 389, 140-149.	3.1	44
114	Selective Adsorption of Manganese onto Rhodium for Optimized Mn/Rh/SiO ₂ Alcohol Synthesis Catalysts. ChemCatChem, 2013, 5, 3665-3672.	1.8	42
115	In situ diffraction of highly dispersed supported platinum nanoparticles. Catalysis Science and Technology, 2014, 4, 3053-3063.	2.1	42
116	Promotion of Pd nanoparticles by Fe and formation of a Pd3Fe intermetallic alloy for propane dehydrogenation. Catalysis Today, 2019, 323, 123-128.	2.2	42
117	Structural Interconversion between Agglomerated Palladium Domains and Mononuclear Pd(II) Cations in Chabazite Zeolites. Chemistry of Materials, 2021, 33, 1698-1713.	3.2	42
118	Origin of Electronic Modification of Platinum in a Pt ₃ V Alloy and Its Consequences for Propane Dehydrogenation Catalysis. ACS Applied Energy Materials, 2020, 3, 1410-1422.	2.5	41
119	Evolution of N-Coordinated Iron–Carbon (FeNC) Catalysts and Their Oxygen Reduction (ORR) Performance in Acidic Media at Various Stages of Catalyst Synthesis: An Attempt at Benchmarking. Catalysis Letters, 2016, 146, 1749-1770.	1.4	40
120	Single Coâ€Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small, 2021, 17, e2006477.	5.2	40
121	Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies. ACS Catalysis, 2015, 5, 7177-7185.	5.5	38
122	Conversion of Dimethyl Ether to 2,2,3-Trimethylbutane over a Cu/BEA Catalyst: Role of Cu Sites in Hydrogen Incorporation. ACS Catalysis, 2015, 5, 1794-1803.	5.5	37
123	Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nature Communications, 2018, 9, 4485.	5.8	37
124	Onset of High Methane Combustion Rates over Supported Palladium Catalysts: From Isolated Pd Cations to PdO Nanoparticles. Jacs Au, 2021, 1, 396-408.	3.6	37
125	Colloidal Synthesis of Well-Defined Bimetallic Nanoparticles for Nonoxidative Alkane Dehydrogenation. ACS Catalysis, 2020, 10, 9813-9823.	5.5	36
126	Reactivity of (bi-Oxazoline)organonickel Complexes and Revision of a Catalytic Mechanism. Journal of the American Chemical Society, 2021, 143, 14458-14463.	6.6	34

#	Article	IF	CITATIONS
127	Effect of Cu content on the bimetallic Pt–Cu catalysts for propane dehydrogenation. Journal of Lithic Studies, 2017, 3, 43-53.	0.1	33
128	Composition Tuning of Ru-Based Phosphide for Enhanced Propane Selective Dehydrogenation. ACS Catalysis, 2020, 10, 10243-10252.	5.5	33
129	Aqueous Phase Glycerol Reforming with Pt and PtMo Bimetallic Nanoparticle Catalysts: The Role of the Mo Promoter. Topics in Catalysis, 2013, 56, 1814-1828.	1.3	32
130	Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. Journal of the American Chemical Society, 2016, 138, 8422-8431.	6.6	32
131	Elucidating the Structure of Bimetallic NiW/SiO ₂ Catalysts and Its Consequences on Selective Deoxygenation of <i>m</i>	5.5	32
132	Tetrahedral Nickel(II) Phosphosilicate Single‣ite Selective Propane Dehydrogenation Catalyst. ChemCatChem, 2018, 10, 961-964.	1.8	31
133	Identification of the structure of the Bi promoted Pt non-oxidative coupling of methane catalyst: a nanoscale Pt ₃ Bi intermetallic alloy. Catalysis Science and Technology, 2019, 9, 1349-1356.	2.1	31
134	Operando Spectroscopic and Kinetic Characterization of Aerobic Allylic C–H Acetoxylation Catalyzed by Pd(OAc) ₂ /4,5-Diazafluoren-9-one. Journal of the American Chemical Society, 2019, 141, 10462-10474.	6.6	31
135	Speciation of CuCl and CuCl ₂ Thiol-Amine Solutions and Characterization of Resulting Films: Implications for Semiconductor Device Fabrication. Inorganic Chemistry, 2017, 56, 14396-14407.	1.9	30
136	Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries. Advanced Energy Materials, 2021, 11, 2101764.	10.2	29
137	Investigating Chemistry of Metal Dissolution in Amine–Thiol Mixtures and Exploiting It toward Benign Ink Formulation for Metal Chalcogenide Thin Films. Chemistry of Materials, 2019, 31, 5674-5682.	3.2	28
138	Strong metal-support interaction (SMSI) of Pt/CeO2 and its effect on propane dehydrogenation. Catalysis Today, 2021, 371, 4-10.	2.2	28
139	In situ intermediate-energy X-ray catalysis research at the advanced photon source beamline 9-BM. Catalysis Today, 2013, 205, 141-147.	2.2	27
140	Synthesis and Catalytic Hydrogenation Reactivity of a Chromium Catecholate Porous Organic Polymer. Organometallics, 2015, 34, 947-952.	1.1	27
141	Air- and Water-Resistant Noble Metal Coated Ferromagnetic Cobalt Nanorods. ACS Nano, 2015, 9, 2792-2804.	7.3	27
142	Supported Tetrahedral Oxo-Sn Catalyst: Single Site, Two Modes of Catalysis. Journal of the American Chemical Society, 2016, 138, 4294-4297.	6.6	26
143	Structure Determination of a Surface Tetragonal Pt ₁ Sb ₁ Phase on Pt Nanoparticles. Chemistry of Materials, 2018, 30, 4503-4507.	3.2	26
144	Olefin oligomerization by main group Ga3+ and Zn2+ single site catalysts on SiO2. Nature Communications, 2021, 12, 2322.	5.8	26

#	Article	IF	CITATIONS
145	Simultaneous Measurement of X-ray Absorption Spectra and Kinetics: A Fixed-bed, Plug-flow Operando Reactor. Catalysis Letters, 2009, 131, 1-6.	1.4	25
146	Supported Aluminum Catalysts for Olefin Hydrogenation. ACS Catalysis, 2017, 7, 689-694.	5.5	25
147	Operando Xâ€ray Absorption Spectroscopy Studies of Sintering for Supported Copper Catalysts during Liquidâ€phase Reaction. ChemCatChem, 2014, 6, 2493-2496.	1.8	24
148	Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine. Science Advances, 2015, 1, e1500656.	4.7	24
149	Influence of Tetrapropylammonium and Ethylenediamine Structure-Directing Agents on the Framework Al Distribution in B–Al–MFI Zeolites. Industrial & Engineering Chemistry Research, 2019, 58, 11849-11860.	1.8	24
150	Combining Kinetics and <i>Operando</i> Spectroscopy to Interrogate the Mechanism and Active Site Requirements of NO _{<i>x</i>} Selective Catalytic Reduction with NH ₃ on Cu-Zeolites. Journal of Physical Chemistry Letters, 2020, 11, 5029-5036.	2.1	24
151	Isolated Metal Sites in Cu–Zn–Y/Beta for Direct and Selective Butene-Rich C ₃₊ Olefin Formation from Ethanol. ACS Catalysis, 2021, 11, 9885-9897.	5.5	24
152	Improving gold catalysis of nitroarene reduction with surface Pd. Catalysis Today, 2016, 264, 31-36.	2.2	23
153	Structural trends in the dehydrogenation selectivity of palladium alloys. Chemical Science, 2020, 11, 5066-5081.	3.7	23
154	Experimental and DFT Investigation into Chloride Poisoning Effects on Nitrogen-Coordinated Iron–Carbon (FeNC) Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 10324-10335.	1.5	23
155	Photochemically active reduced graphene oxide with controllable oxidation level. RSC Advances, 2012, 2, 11258.	1.7	22
156	Synthesis and characterization of Au-core Ag-shell nanoparticles from unmodified apoferritin. Journal of Materials Chemistry, 2012, 22, 14458.	6.7	22
157	Rhodium Catechol Containing Porous Organic Polymers: Defined Catalysis for Single-Site and Supported Nanoparticulate Materials. Organometallics, 2014, 33, 2517-2522.	1.1	22
158	Rapid Electrochemical Methane Functionalization Involves Pd–Pd Bonded Intermediates. Journal of the American Chemical Society, 2020, 142, 20631-20639.	6.6	21
159	Identification of a Selectivity Descriptor for Propane Dehydrogenation through Density Functional and Microkinetic Analysis on Pure Pd and Pd Alloys. ACS Catalysis, 2021, 11, 9588-9604.	5.5	21
160	Aqueous-Phase Hydrodechlorination of Trichloroethylene over Pd-Based Swellable Organically Modified Silica: Catalyst Deactivation Due to Sulfur Species. Industrial & Engineering Chemistry Research, 2019, 58, 4054-4064.	1.8	20
161	Surface vs Homogeneous Organo-Hafnium Catalyst Ion-Pairing and Ligand Effects on Ethylene Homo- and Copolymerizations. ACS Catalysis, 2021, 11, 3239-3250.	5.5	20
162	Structure–kinetic relationship study of organozinc reagents. Chemical Communications, 2014, 50, 8709.	2.2	19

#	Article	IF	CITATIONS
163	Swellable Organically Modified Silica (SOMS) as a Catalyst Scaffold for Catalytic Treatment of Water Contaminated with Trichloroethylene. ACS Catalysis, 2018, 8, 6796-6809.	5.5	19
164	The effect of strong metal–support interaction (SMSI) on Pt–Ti/SiO2 and Pt–Nb/SiO2 catalysts for propane dehydrogenation. Catalysis Science and Technology, 2020, 10, 5973-5982.	2.1	19
165	EXAFS Characterization of Palladium-on-Gold Catalysts Before and After Glycerol Oxidation. Topics in Catalysis, 2015, 58, 302-313.	1.3	17
166	Gas-Phase Ethylene Polymerization by Single-Site Cr Centers in a Metal–Organic Framework. ACS Catalysis, 2020, 10, 3864-3870.	5.5	17
167	MXeneâ€Supported, Atomicâ€Layered Iridium Catalysts Created by Nanoparticle Reâ€Dispersion for Efficient Alkaline Hydrogen Evolution. Small, 2022, 18, e2105226.	5.2	16
168	Evidence for geometric effects in neopentane conversion on PdAu catalysts. Catalysis Science and Technology, 2014, 4, 4366-4377.	2.1	15
169	Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene. Organometallics, 2017, 36, 3677-3685.	1.1	15
170	Inverse Bimetallic RuSn Catalyst for Selective Carboxylic Acid Reduction. ACS Catalysis, 2019, 9, 11350-11359.	5.5	15
171	Ni/CeO2 promoted Ru and Pt supported on FeCrAl gauze for cycling methane catalytic partial oxidation—CPOX. Applied Catalysis B: Environmental, 2021, 286, 119849.	10.8	15
172	Improvement of Selectivity in Acetylene Hydrogenation with Comparable Activity over Ordered PdCu Catalysts Induced by Post-treatment. ACS Applied Materials & Interfaces, 2021, 13, 706-716.	4.0	15
173	Structural and Catalytic Properties of Isolated Pt ²⁺ Sites in Platinum Phosphide (PtP ₂). ACS Catalysis, 2021, 11, 13496-13509.	5.5	15
174	Decoupling and elucidation of surface-driven processes during inorganic mineralization on virus templates. Journal of Colloid and Interface Science, 2016, 483, 165-176.	5.0	14
175	Experimental and Computational Investigation of the Role of P in Moderating Ethane Dehydrogenation Performance over Ni-Based Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 12666-12676.	1.8	14
176	Analyzing and Tuning the Chalcogen–Amine–Thiol Complexes for Tailoring of Chalcogenide Syntheses. Inorganic Chemistry, 2020, 59, 8240-8250.	1.9	14
177	Investigation of the Reduction/Oxidation Behavior of Cobalt Supported on Nano-ceria. Topics in Catalysis, 2014, 57, 785-795.	1.3	13
178	BSMV as a Biotemplate for Palladium Nanomaterial Synthesis. Langmuir, 2017, 33, 1716-1724.	1.6	13
179	Exploring Low-Temperature Dehydrogenation at Ionic Cu Sites in Beta Zeolite To Enable Alkane Recycle in Dimethyl Ether Homologation. ACS Catalysis, 2017, 7, 3662-3667.	5.5	13
180	Selective Butene Formation in Direct Ethanol-to-C ₃₊ -Olefin Valorization over Zn–Y/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen. ACS Catalysis, 2021, 11, 7193-7209.	5.5	13

#	Article	IF	CITATIONS
181	Promoting propane dehydrogenation with CO2 over Ga2O3/SiO2 by eliminating Ga-hydrides. Chinese Journal of Catalysis, 2021, 42, 2225-2233.	6.9	13
182	Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes. Chemical Science, 2021, 12, 227-238.	3.7	12
183	Design and synthesis of model and practical palladium catalysts using atomic layer deposition. Catalysis Science and Technology, 2016, 6, 6845-6852.	2.1	11
184	Ammonia Titration Methods To Quantify BrÃ,nsted Acid Sites in Zeolites Substituted with Aluminum and Boron Heteroatoms. Industrial & Engineering Chemistry Research, 2018, 57, 6673-6683.	1.8	11
185	Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Research, 2023, 16, 4499-4505.	5.8	11
186	Mechanism of Me–Re Bond Addition to Platinum(II) and Dioxygen Activation by the Resulting Pt–Re Bimetallic Center. Inorganic Chemistry, 2017, 56, 2145-2152.	1.9	10
187	Diffusion-Limited Formation of Nonequilibrium Intermetallic Nanophase for Selective Dehydrogenation. Nano Letters, 2019, 19, 4380-4383.	4.5	10
188	Structural and Chemical Transformations of Zinc Oxide Ultrathin Films on Pd(111) Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 35113-35123.	4.0	10
189	Ethane dehydrogenation performance and high temperature stability of silica supported cobalt phosphide nanoparticles. Catalysis Science and Technology, 2022, 12, 976-985.	2.1	10
190	Dehydroaromatization Pathway of Propane on PtZn/SiO ₂ + ZSM-5 Bifunctional Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 394-409.	3.2	10
191	Increasing the Aromatic Selectivity of Quinoline Hydrogenolysis Using Pd/MOx–Al2O3. Catalysis Letters, 2014, 144, 1832-1838.	1.4	9
192	Hierarchically Porous Calcium ontaining Manganese Dioxide Nanorod Bundles with Superior Photoelectrochemical Activity. ChemCatChem, 2014, 6, 1684-1690.	1.8	9
193	Lithium Assisted "Dissolution–Alloying―Synthesis of Nanoalloys from Individual Bulk Metals. Chemistry of Materials, 2016, 28, 2267-2277.	3.2	9
194	Vanadium Oxide Based Nanostructured Materials for Catalytic Oxidative Dehydrogenation of Propane: Effect of Heterometallic Centers on the Catalyst Performance. Catalysis Letters, 2010, 135, 282-290.	1.4	8
195	Short contact time CH4 partial oxidation over Ni based catalyst at 1.5 MPa. Chemical Engineering Journal, 2021, 414, 128831.	6.6	8
196	In Situ Xâ€ray Absorption Spectroscopy and Nonclassical Catalytic Hydrogenation with an Iron(II) Catecholate Immobilized on a Porous Organic Polymer. European Journal of Inorganic Chemistry, 2013, 2013, 3972-3977.	1.0	7
197	Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS Applied Materials & Interfaces, 2021, , .	4.0	7
198	Catalyst design to direct high-octane gasoline fuel properties for improved engine efficiency. Applied Catalysis B: Environmental, 2022, 301, 120801.	10.8	7

#	Article	IF	CITATIONS
199	Millifluidics: Developing a Millifluidic Platform for the Synthesis of Ultrasmall Nanoclusters: Ultrasmall Copper Nanoclusters as a Case Study (Small 5/2012). Small, 2012, 8, 687-687.	5.2	6
200	Aromatic C–H bond cleavage by using a Cu(i) ate-complex. Organic Chemistry Frontiers, 2016, 3, 975-978.	2.3	6
201	Reaction-Mediated Transformation of Working Catalysts. ACS Catalysis, 2022, 12, 8007-8018.	5.5	6
202	Mechanistic study of the hydrothermal reduction of palladium on the Tobacco mosaic virus. Journal of Colloid and Interface Science, 2015, 450, 1-6.	5.0	5
203	First-Principles Analysis of Ethylene Oligomerization on Single-Site Ga ³⁺ Catalysts Supported on Amorphous Silica. ACS Catalysis, 2022, 12, 5416-5424.	5.5	4
204	Thermal annealing effects on palladium-decorated gold nanoparticle catalysts. Journal of Catalysis, 2022, 410, 246-255.	3.1	4
205	Gold-doping of carbon-supported palladium improves reduction catalysis. Chinese Journal of Catalysis, 2016, 37, 1776-1786.	6.9	3
206	Effect of cobalt addition on platinum supported on multi-walled carbon nanotubes for water-gas shift. Journal of Catalysis, 2020, 391, 25-34.	3.1	3
207	Catalytic process development strategies for conversion of propane to liquid hydrocarbons. Applied Catalysis A: General, 2022, 643, 118753.	2.2	2
208	Rücktitelbild: Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition (Angew. Chem. 51/2013). Angewandte Chemie, 2013, 125, 14068-14068.	1.6	1
209	In Situ S/TEM Reduction Reaction of Ni-Mo2C Catalyst for Biomass Conversion. Microscopy and Microanalysis, 2018, 24, 322-323.	0.2	1
210	Operando X-ray Absorption Spectroscopy Studies of Sintering for Supported Copper Catalysts during Liquid-phase Reaction. ChemCatChem, 2014, 6, 2437-2437.	1.8	0
211	Synthesis and Testing of Supported Pt-Cu Solid Solution Nanoparticle Catalysts for Propane Dehydrogenation. Journal of Visualized Experiments, 2017, , .	0.2	0
212	Successive Strong Electrostatic Adsorptions of [RhCl6]3– on Tungstated-Ceria as an Original Approach to Preserve Rh Clusters From Sintering Under High-Temperature Reduction. Journal of Physical Chemistry C, 0, , .	1.5	0