Ioannis Dimitriou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5396020/publications.pdf

Version: 2024-02-01

40 papers

1,373 citations

304368

22

h-index

37 g-index

41 all docs

41 docs citations

41 times ranked

1547 citing authors

#	Article	IF	Citations
1	Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. International Journal of Phytoremediation, 2015, 17, 1005-1037.	1.7	197
2	Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Bioresource Technology, 2006, 97, 150-157.	4.8	72
3	Changes in Organic Carbon and Trace Elements in the Soil of Willow Short-Rotation Coppice Plantations. Bioenergy Research, 2012, 5, 563-572.	2,2	63
4	Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Science of the Total Environment, 2012, 421-422, 210-219.	3.9	63
5	Assessing Environmental Impacts of Short Rotation Coppice (SRC) Expansion: Model Definition and Preliminary Results. Bioenergy Research, 2012, 5, 621-635.	2,2	62
6	Impact of Willow Short Rotation Coppice on Water Quality. Bioenergy Research, 2012, 5, 537-545.	2.2	61
7	Treatment of landfill leachate by irrigation of willow coppice – Plant response and treatment efficiency. Environmental Pollution, 2010, 158, 795-804.	3.7	59
8	Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Global Environmental Change, 2020, 60, 101990.	3.6	55
9	Status and prospects for renewable energy using wood pellets from the southeastern United States. GCB Bioenergy, 2017, 9, 1296-1305.	2,5	52
10	Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO). Science of the Total Environment, 2014, 496, 510-522.	3.9	49
11	Nitrogen leaching from short-rotation willow coppice after intensive irrigation with wastewater. Biomass and Bioenergy, 2004, 26, 433-441.	2.9	48
12	Assessing phytotoxicity of trace element-contaminated soils phytomanaged with gentle remediation options at ten European field trials. Science of the Total Environment, 2017, 599-600, 1388-1398.	3.9	45
13	Impact of Nitrogen Fertilization to Short-Rotation Willow Coppice Plantations Grown in Sweden on Yield and Economy. Bioenergy Research, 2014, 7, 993-1001.	2.2	44
14	Poplar and willow plantations on agricultural land in Sweden: Area, yield, groundwater quality and soil organic carbon. Forest Ecology and Management, 2017, 383, 99-107.	1.4	41
15	Wood biomass potentials for energy in northern Europe: Forest or plantations?. Biomass and Bioenergy, 2017, 106, 95-103.	2.9	40
16	Mechanised harvesting of short-rotation coppices. Renewable and Sustainable Energy Reviews, 2017, 76, 90-104.	8.2	39
17	Wood fuel quality of two Salix viminalis stands fertilised with sludge, ash and sludge–ash mixtures. Biomass and Bioenergy, 2008, 32, 914-925.	2.9	37
18	A conceptual framework for the introduction of energy crops. Renewable Energy, 2014, 72, 29-38.	4.3	30

#	Article	IF	CITATIONS
19	The significance of rotation periods for mycorrhiza formation in Short Rotation Coppice. Forest Ecology and Management, 2010, 260, 1943-1949.	1.4	29
20	How Much Yield Should We Expect from Fast-Growing Plantations for Energy? Divergences Between Experiments and Commercial Willow Plantations. Bioenergy Research, 2015, 8, 1769-1777.	2.2	29
21	Reviewing wood biomass potentials for energy in Europe: the role of forests and fast growing plantations. Biofuels, 2017, 8, 401-410.	1.4	27
22	Multifunctional perennial production systems for bioenergy: performance and progress. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e375.	1.9	26
23	Energy analysis of willow production for bioenergy in Sweden. Renewable and Sustainable Energy Reviews, 2018, 93, 473-482.	8.2	25
24	Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e345.	1.9	22
25	Treatment of log yard run-off by irrigation of grass and willows. Environmental Pollution, 2006, 139, 157-166.	3.7	18
26	Spatial yield estimates of fastâ€growing willow plantations for energy based on climatic variables in northern Europe. GCB Bioenergy, 2016, 8, 1093-1105.	2.5	18
27	Effects of soil type, irrigation volume and plant species on treatment of log yard run-off in lysimeters. Water Research, 2004, 38, 3634-3642.	5.3	15
28	Energy analysis of poplar production for bioenergy in Sweden. Biomass and Bioenergy, 2018, 112, 110-120.	2.9	15
29	Strategic deployment of riparian buffers and windbreaks in Europe can co-deliver biomass and environmental benefits. Communications Earth & Environment, 2021, 2, .	2.6	11
30	Impact of Populus Plantations on Water and Soil Quality. Bioenergy Research, 2017, 10, 750-759.	2.2	10
31	Meeting Sustainability Requirements for SRC Bioenergy: Usefulness of Existing Tools, Responsibilities of Involved Stakeholders, and Recommendations for Further Developments. Bioenergy Research, 2012, 5, 606-620.	2.2	9
32	Environmental Impacts of Short Rotation Coppice (SRC) Grown for Biomass on Agricultural Land. Bioenergy Research, 2012, 5, 535-536.	2.2	9
33	Diameter–Height Models for Fast-growing Poplar Plantations on Agricultural Land in Sweden. Bioenergy Research, 2015, 8, 1759-1768.	2.2	9
34	From preferences to concerted policy on mandated share for renewable energy in transport. Energy Policy, 2021, 155, 112355.	4.2	9
35	Opportunities to encourage mobilization of sustainable bioenergy supply chains. Wiley Interdisciplinary Reviews: Energy and Environment, 2017, 6, e237.	1.9	8
36	Nitrogen fertilization of poplar plantations on agricultural land: effects on diameter increments and leaching. Scandinavian Journal of Forest Research, 2017, 32, 700-707.	0.5	8

#	Article	IF	CITATIONS
37	Reed Canary Grass for Energy in Sweden: Yields, Land-Use Patterns, and Climatic Profile. Forests, 2021, 12, 897.	0.9	7
38	Positioning the biofuel policy in the bioeconomy of the <i>BioEast </i> hi>macro-region. Biofuels, 2022, 13, 833-842.	1.4	5
39	The Contributions of Biomass Supply for Bioenergy in the Post-COVID-19 Recovery. Energies, 2021, 14, 8415.	1.6	4
40	Optimising the Environmental Sustainability of Short Rotation Coppice Biomass Production for Energy. South-East European Forestry, 2014, 5, .	0.1	1