Fabio carniato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5395607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of NMR relaxometry for real-time monitoring of the removal of metal ions from water by synthetic clays. Dalton Transactions, 2022, 51, 4502-4509.	3.3	1
2	High Relaxivity with No Coordinated Waters: A Seemingly Paradoxical Behavior of [Gd(DOTP)] ^{5–} Embedded in Nanogels. Inorganic Chemistry, 2022, 61, 5380-5387.	4.0	7
3	Surprising Complexity of the [Gd(AAZTA)(H ₂ 0) ₂] ^{â^'} Chelate Revealed by NMR in the Frequency and Time Domains. Inorganic Chemistry, 2022, 61, 496-506.	4.0	4
4	Synthesis of Novel Luminescent Double-Decker Silsesquioxanes Based on Partially Condensed TetraSilanolPhenyl POSS and Tb3+/Eu3+ Lanthanide Ions. Processes, 2022, 10, 758.	2.8	10
5	Rational Design of Highâ€Relaxivity Eu ^{II} â€Based Contrast Agents for Magnetic Resonance Imaging of Lowâ€Oxygen Environments. Chemistry - A European Journal, 2021, 27, 3114-3118.	3.3	11
6	Magnetic resonance thermometry using a GdIII-based contrast agent. Chemical Communications, 2021, 57, 1770-1773.	4.1	4
7	Defining the conditions for the development of the emerging class of Fe ^{III} -based MRI contrast agents. Chemical Science, 2021, 12, 11138-11145.	7.4	34
8	Bifunctional Europium(III) and Niobium(V) ontaining Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Chemistry - A European Journal, 2021, 27, 4723-4730.	3.3	6
9	Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils. ACS Applied Materials & Interfaces, 2021, 13, 15509-15517.	8.0	8
10	A Singleâ€Pot Template Reaction Towards a Manganeseâ€Based T 1 Contrast Agent. Angewandte Chemie, 2021, 133, 10831-10839.	2.0	2
11	A Singleâ€Pot Template Reaction Towards a Manganeseâ€Based <i>T</i> ₁ Contrast Agent. Angewandte Chemie - International Edition, 2021, 60, 10736-10744.	13.8	38
12	Bifunctional Paramagnetic and Luminescent Clays Obtained by Incorporation of Gd ³⁺ and Eu ³⁺ lons in the Saponite Framework. Inorganic Chemistry, 2021, 60, 10749-10756.	4.0	4
13	Enhancement of the Luminescence Properties of Eu (III) Containing Paramagnetic Saponite Clays. Applied Sciences (Switzerland), 2021, 11, 8903.	2.5	3
14	Mn(<scp>ii</scp>)-Conjugated silica nanoparticles as potential MRI probes. Journal of Materials Chemistry B, 2021, 9, 8994-9004.	5.8	9
15	More Efficient Prussian Blue Nanoparticles for an Improved Caesium Decontamination from Aqueous Solutions and Biological Fluids. Molecules, 2020, 25, 3447.	3.8	8
16	Mn2+ Complexes Containing Sulfonamide Groups with pH-Responsive Relaxivity. Inorganic Chemistry, 2020, 59, 14306-14317.	4.0	10
17	Novel light-emitting clays with structural Tb ³⁺ and Eu ³⁺ for chromate anion detection. RSC Advances, 2020, 10, 29765-29771.	3.6	11
18	Water Diffusion Modulates the CEST Effect on Tb(III)-Mesoporous Silica Probes. Magnetochemistry, 2020, 6, 38.	2.4	3

#	Article	IF	CITATIONS
19	Macrocyclic Pyclen-Based Gd3+ Complex with High Relaxivity and pH Response. Inorganic Chemistry, 2020, 59, 7306-7317.	4.0	4
20	Analysis of the Relaxometric Properties of Extremely Rapidly Exchanging Gd ³⁺ Chelates: Lessons from a Comparison of Four Isomeric Chelates. Inorganic Chemistry, 2020, 59, 9037-9046.	4.0	7
21	An overview of the recent synthesis and functionalization methods of saponite clay. New Journal of Chemistry, 2020, 44, 9969-9980.	2.8	37
22	A Luminescent Polysilsesquioxane Obtained by Selfâ€Condensation of Anionic Polyhedral Oligomeric Silsequioxanes (POSS) and Europium(III) Ions. ChemPlusChem, 2020, 85, 176-182.	2.8	9
23	Synthetic saponite clays as promising solids for lanthanide ion recovery. New Journal of Chemistry, 2020, 44, 10033-10041.	2.8	13
24	pHâ€Dependent Hydration Change in a Gdâ€Based MRI Contrast Agent with a Phosphonated Ligand. Chemistry - A European Journal, 2020, 26, 5407-5418.	3.3	8
25	Combination of solid-state NMR and ¹ H NMR relaxometry for the study of intercalated saponite clays with the macrocyclic derivatives of Gd(<scp>iii</scp>) and Y(<scp>iii</scp>). Dalton Transactions, 2020, 49, 6566-6571.	3.3	7
26	¹ H NMR Relaxometric Study of Chitosan-Based Nanogels Containing Mono- and Bis-Hydrated Gd(III) Chelates: Clues for MRI Probes of Improved Sensitivity. ACS Applied Bio Materials, 2020, 3, 9065-9072.	4.6	16
27	Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. Journal of Functional Biomaterials, 2019, 10, 28.	4.4	6
28	Mn(II) compounds as an alternative to Gd-based MRI probes. Future Medicinal Chemistry, 2019, 11, 1461-1483.	2.3	81
29	Photoacoustic ratiometric assessment of mitoxantrone release from theranostic ICG-conjugated mesoporous silica nanoparticles. Nanoscale, 2019, 11, 18031-18036.	5.6	12
30	A pentadentate member of the picolinate family for Mn(ii) complexation and an amphiphilic derivative. Dalton Transactions, 2019, 48, 696-710.	3.3	11
31	Gadolinium(III)â€Based Dual ¹ H/ ¹⁹ F Magnetic Resonance Imaging Probes. Chemistry - A European Journal, 2019, 25, 4782-4792.	3.3	21
32	Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 2019, 581, 133-142.	4.3	25
33	Periodic trends and hidden dynamics of magnetic properties in three series of triazacyclononane lanthanide complexes. Dalton Transactions, 2019, 48, 8400-8409.	3.3	13
34	Electronic Effects of the Substituents on Relaxometric and CEST Behaviour of Ln(III)-DOTA-Tetraanilides. Inorganics, 2019, 7, 43.	2.7	2
35	Differences in the Relaxometric Properties of Regioisomeric Benzyl-DOTA Bifunctional Chelators: Implications for Molecular Imaging. Bioconjugate Chemistry, 2019, 30, 1530-1538.	3.6	8
36	Multifunctional Gd-based mesoporous silica nanotheranostic for anticancer drug delivery. Journal of Materials Chemistry B, 2019, 7, 3143-3152.	5.8	15

#	Article	IF	CITATIONS
37	1H NMR Relaxometric Analysis of Paramagnetic Gd2O3:Yb Nanoparticles Functionalized with Citrate Groups. Inorganics, 2019, 7, 34.	2.7	4
38	Lanthanide Complexes of DO3A–(Dibenzylamino)methylphosphinate: Effect of Protonation of the Dibenzylamino Group on the Water-Exchange Rate and the Binding of Human Serum Albumin. Inorganic Chemistry, 2019, 58, 5196-5210.	4.0	11
39	Controlling water exchange rates in potential Mn2+-based MRI agents derived from NO2A2â^'. Dalton Transactions, 2019, 48, 3962-3972.	3.3	18
40	Novel paramagnetic clays obtained through intercalation of Gd ³⁺ -complexes. Dalton Transactions, 2018, 47, 7896-7904.	3.3	9
41	Relaxivity Enhancement of Ditopic Bishydrated Gadolinium(III) Complexes Conjugated to Mesoporous Silica Nanoparticles. European Journal of Inorganic Chemistry, 2018, 2018, 2363-2368.	2.0	7
42	[Yb(AAZTA)(H ₂ 0)] ^{â^'} : an unconventional ParaCEST MRI probe. Chemical Communications, 2018, 54, 2004-2007.	4.1	11
43	Gdâ€Based Mesoporous Silica Nanoparticles as MRI Probes. European Journal of Inorganic Chemistry, 2018, 2018, 4936-4954.	2.0	41
44	Synthesis Routes of POSS. Springer Series on Polymer and Composite Materials, 2018, , 1-26.	0.7	2
45	Physico-chemical Properties, Biological and Environmental Impact of Nb-saponites Catalysts for the Oxidative Degradation of Chemical Warfare Agents. ChemistrySelect, 2017, 2, 1812-1819.	1.5	9
46	Large photoacoustic effect enhancement for ICG confined inside MCM-41 mesoporous silica nanoparticles. Nanoscale, 2017, 9, 99-103.	5.6	34
47	Charged polyhedral oligomeric silsesquioxanes trigger in vitro METosis via both oxidative stress and autophagy. Life Sciences, 2017, 190, 58-67.	4.3	4
48	High Relaxivity Gadoliniumâ€Polydopamine Nanoparticles. Small, 2017, 13, 1701830.	10.0	48
49	Tungsten oxide: a catalyst worth studying for the abatement and decontamination of chemical warfare agents. Global Security: Health, Science and Policy, 2017, 2, 62-75.	1.6	4
50	Structural Features of Europium(II) ontaining Cryptates That Influence Relaxivity. Chemistry - A European Journal, 2017, 23, 15404-15414.	3.3	39
51	On Water and its Effect on the Performance of <i>T</i> ₁ â€5hortening Contrast Agents. Israel Journal of Chemistry, 2017, 57, 880-886.	2.3	5
52	Dimer formation of GdDO3A-arylsulfonamide complexes causes loss of pH-dependency of relaxivity. Dalton Transactions, 2017, 46, 16828-16836.	3.3	13
53	Definition of the Labile Capping Bond Effect in Lanthanide Complexes. Chemistry - A European Journal, 2017, 23, 1110-1117.	3.3	24
54	Chapter 2. Gadolinium-based Contrast Agents. New Developments in NMR, 2017, , 121-242.	0.1	17

#	Article	IF	CITATIONS
55	Polycatechol Nanoparticle MRI Contrast Agents. Small, 2016, 12, 668-677.	10.0	64
56	Gadoliniumâ€Decorated Silica Microspheres as Redoxâ€Responsive MRI Probes for Applications in Cell Therapy Followâ€Up. Chemistry - A European Journal, 2016, 22, 7716-7720.	3.3	14
57	Amphiphilic Ditopic Bisâ€Aqua Gdâ€AAZTAâ€like Complexes Enhance Relaxivity of Lipidic MRI Nanoprobes. Chemistry - an Asian Journal, 2016, 11, 2139-2143.	3.3	15
58	Synthesis of an Amphiphilic Bisâ€Aqua Gd(OBETA) Complex for the Preparation of Highâ€Relaxivity Supramolecular Magnetic Resonance Imaging Probes. ChemPlusChem, 2016, 81, 235-241.	2.8	4
59	Nanosized inorganic metal oxides as heterogeneous catalysts for the degradation of chemical warfare agents. Catalysis Today, 2016, 277, 192-199.	4.4	39
60	Structure and Function of Iron-Loaded Synthetic Melanin. ACS Nano, 2016, 10, 10186-10194.	14.6	127
61	An efficient epoxidation of terminal aliphatic alkenes over heterogeneous catalysts: when solvent matters. Catalysis Science and Technology, 2016, 6, 3832-3839.	4.1	21
62	Luminescent Mesoporous Silica Built through Selfâ€Assembly of Polyhedral Oligomeric Silsesquioxane and Europium(III) Ions. ChemPlusChem, 2015, 80, 915-918.	2.8	13
63	The stability of niobium-silica catalysts in repeated liquid-phase epoxidation tests: A comparative evaluation of in-framework and grafted mixed oxides. Inorganica Chimica Acta, 2015, 431, 190-196.	2.4	23
64	POSS as building-blocks for the preparation of polysilsesquioxanes through an innovative synthetic approach. Dalton Transactions, 2015, 44, 2042-2046.	3.3	10
65	Selective functionalization of mesoporous silica nanoparticles with ibuprofen and Gd(<scp>iii</scp>) chelates: a new probe for potential theranostic applications. Dalton Transactions, 2015, 44, 17927-17931.	3.3	19
66	A structural and 1H NMR relaxometric study on novel layered carboxyalkylaminophosphonate nanocrystals with Gd(iii) ions located in the framework. Dalton Transactions, 2015, 44, 19072-19075.	3.3	2
67	NaGdF ₄ Nanoparticles Coated with Functionalised Ethylenediaminetetraacetic Acid as Versatile Probes for Dual Optical and Magnetic Resonance Imaging. ChemPlusChem, 2015, 80, 503-510.	2.8	8
68	Toward quasi-solid state Dye-sensitized Solar Cells: Effect of γ-Al 2 O 3 nanoparticle dispersion into liquid electrolyte. Solar Energy, 2015, 111, 125-134.	6.1	24
69	Organo-modified ZnO nanoparticles: tuning of the optical properties for PLED device fabrication. New Journal of Chemistry, 2014, 38, 6205-6211.	2.8	12
70	Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents. Angewandte Chemie - International Edition, 2014, 53, 10095-10098.	13.8	83
71	Promotion of Förster Resonance Energy Transfer in a Saponite Clay Containing Luminescent Polyhedral Oligomeric Silsesquioxane and Rhodamine Dye. Chemistry - an Asian Journal, 2014, 9, 158-165. -	3.3	21
72	MRI nanoprobes based on chemical exchange saturation transfer: Ln ^{III} chelates anchored on the surface of mesoporous silica nanoparticles. Nanoscale, 2014, 6, 9604-9607.	5.6	19

#	Article	IF	CITATIONS
73	Niobium(V) Saponite Clay for the Catalytic Oxidative Abatement of Chemical Warfare Agents. Angewandte Chemie, 2014, 126, 10259-10262.	2.0	21
74	Synthesis and characterisation of a novel europium(<scp>iii</scp>)-containing heptaisobutyl-POSS. New Journal of Chemistry, 2014, 38, 2480-2485.	2.8	28
75	Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine, 2014, 32, 5681-5689.	3.8	116
76	Grafted non-ordered niobium-silica materials: Versatile catalysts for the selective epoxidation of various unsaturated fine chemicals. Catalysis Today, 2014, 235, 49-57.	4.4	36
77	Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. Journal of Materials Chemistry A, 2013, 1, 10142.	10.3	33
78	Structure and dynamics of the hydration shells of citrate-coated GdF3 nanoparticles. Journal of Materials Chemistry B, 2013, 1, 2442.	5.8	23
79	Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride. Physical Chemistry Chemical Physics, 2013, 15, 13354.	2.8	59
80	Niobium metallocenes deposited onto mesoporous silica via dry impregnation as catalysts for selective epoxidation of alkenes. Journal of Catalysis, 2013, 298, 77-83.	6.2	65
81	Flow cytometry evidence of human granulocytes interaction with polyhedral oligomeric silsesquioxanes: effect of nanoparticle charge. Nanotechnology, 2013, 24, 185101.	2.6	7
82	Selective Anchoring of Gd ^{III} Chelates on the External Surface of Organoâ€Modified Mesoporous Silica Nanoparticles: A New Chemical Strategy To Enhance Relaxivity. Chemistry - A European Journal, 2013, 19, 1421-1428.	3.3	43
83	Epoxidation with hydrogen peroxide of unsaturated fatty acid methyl esters over Nb(V)â€silica catalysts. European Journal of Lipid Science and Technology, 2013, 115, 86-93.	1.5	43
84	Size effect of synthetic saponite-clay in quasi-solid electrolyte for dye-sensititized solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 9-14.	6.2	24
85	Preparation of luminescent ZnO nanoparticles modified with aminopropyltriethoxy silane for optoelectronic applications. New Journal of Chemistry, 2013, 37, 2103.	2.8	43
86	Structured Inorganic Oxide-Based Materials for the Absorption and Destruction of CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 43-53.	0.3	2
87	POSS/gelatinâ€polyglutamic acid hydrogel composites: Preparation, biological and mechanical characterization. Journal of Applied Polymer Science, 2013, 129, 699-706.	2.6	27
88	A novel electroluminescent PPV copolymer and silsesquioxane nanocomposite film for the preparation of efficient PLED devices. Nanotechnology, 2012, 23, 435702.	2.6	11
89	Rational design of single-site heterogeneous catalysts: towards high chemo-, regio- and stereoselectivity. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1904-1926.	2.1	40
90	Efficient Photoinduced Energy Transfer in a Newly Developed Hybrid SBAâ€15 Photonic Antenna. Chemistry - A European Journal, 2012, 18, 15310-15315.	3.3	20

#	Article	IF	CITATIONS
91	A novel stable and efficient light-emitting solid based on saponite and luminescent POSS. Journal of Materials Chemistry, 2012, 22, 25254.	6.7	25
92	On a Novel Catalytic System Based on Electrospun Nanofibers and M-POSS. ACS Applied Materials & Interfaces, 2012, 4, 604-607.	8.0	31
93	The effect of synthesis gel dilution on the physico-chemical properties of acid saponite clays. Microporous and Mesoporous Materials, 2012, 162, 159-167.	4.4	32
94	A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Transactions, 2012, 41, 7467.	3.3	47
95	On the organic/inorganic interface between mesoporous SBA-16 silica and its structural directing polymer: a combined FT-IR and solid state NMR study. RSC Advances, 2012, 2, 1153-1160.	3.6	7
96	Acid/Vanadium ontaining Saponite for the Conversion of Propene into Coke: Potential Flameâ€Retardant Filler for Nanocomposite Materials. Chemistry - an Asian Journal, 2012, 7, 2394-2402.	3.3	8
97	Ti-POSS covalently immobilized onto mesoporous silica: A model for active sites in heterogeneous catalytic epoxidation. Inorganica Chimica Acta, 2012, 380, 244-251.	2.4	21
98	On the Physico-Chemical Properties of ZnO Nanosheets Modified with Luminescent CdTe Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 25257-25265.	3.1	19
99	Incorporation of a Semiconductive Polymer into Mesoporous SBA-15 Platelets: Toward New Luminescent Hybrid Materials. Chemistry of Materials, 2011, 23, 2803-2809.	6.7	31
100	One-Pot Synthesis and Physicochemical Properties of an Organo-Modified Saponite Clay. Langmuir, 2011, 27, 7250-7257.	3.5	30
101	Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti-POSS by direct reactive blending. Polymer Degradation and Stability, 2011, 96, 1793-1798.	5.8	19
102	Effects of high zinc concentration on poplar leaves: A morphological and biochemical study. Environmental and Experimental Botany, 2011, 71, 50-56.	4.2	117
103	Organic–Inorganic Hybrid Saponites Obtained by Intercalation of Titanoâ€ 6 ilsesquioxane. Chemistry - an Asian Journal, 2011, 6, 914-921.	3.3	9
104	Synthesis of stable ruthenium carbonyl complexes containing alkynols ligands and 2(diphenylphosphino)ethyl-triethoxysilane: novel complexes to anchor on mesoporous silica SBA-15 and Al2O3 surface. Journal of Sol-Gel Science and Technology, 2011, 58, 564-571.	2.4	2
105	A novel use of Tiâ€POSS as initiator of L â€lactide ringâ€opening polymerization. Journal of Polymer Science Part A, 2011, 49, 4794-4799.	2.3	30
106	A Chemical Strategy for the Relaxivity Enhancement of Gd ^{III} Chelates Anchored on Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2010, 16, 10727-10734.	3.3	69
107	Synthesis and structure of new phosphine-substituted homo- and hetero-bimetallic carbonyl clusters of iron, ruthenium and nickel. Characterization of two inorganic–organometallic hybrid materials based on mesoporous SBA-15 silica. Inorganica Chimica Acta, 2010, 363, 1773-1778.	2.4	10
108	Novel polymer nanocomposites based on polystyrene and Tiâ€functionalized polyhedral silsesquioxanes. Polymers for Advanced Technologies, 2010, 21, 848-853.	3.2	12

#	Article	IF	CITATIONS
109	On the hydrothermal stability of MCM-41 mesoporous silica nanoparticles and the preparation of luminescent materials. Journal of Materials Chemistry, 2010, 20, 5504.	6.7	49
110	Titanosilsesquioxanes Embedded in Synthetic Clay as a Hybrid Material for Polymer Science. Angewandte Chemie - International Edition, 2009, 48, 6059-6061.	13.8	47
111	Reaction of the novel Ru3(CO)10[Ph2P(CH2)2Si(OEt3)]2 complex on SBA-15 and MCM-41 mesoporous silicas. Journal of Sol-Gel Science and Technology, 2009, 52, 235-241.	2.4	7
112	On the Properties of a Novel V-Containing Saponite Catalyst for Propene Oxidative Dehydrogenation. Catalysis Letters, 2009, 131, 42-48.	2.6	14
113	Reactions of Co2(CO)8 and of Co2(CO)6L (L=3-pentyn-1-ol, 1,4-butyn-diol or 2-methyl-3-butyn-2-ol) with 2(diphenylphosphino)ethyl-trietoxysilane and tris(hydroxymethyl)phosphine for applications to new sol–gel materials. Journal of Organometallic Chemistry, 2009, 694, 4241-4249.	1.8	3
114	An efficient ring opening reaction of methyl epoxystearate promoted by synthetic acid saponite clays. Green Chemistry, 2009, 11, 1173.	9.0	24
115	Investigating Surface vs Bulk Kinetics in the Formation of a Molecular Complex via Solid-State Reaction by Simultaneous Raman/X-ray Powder Diffraction. Crystal Growth and Design, 2009, 9, 3396-3404.	3.0	16
116	Studying modifications and reactions in materials by simultaneous Raman and X-ray powder diffraction at non-ambient conditions: methods and applications. Phase Transitions, 2009, 82, 293-302.	1.3	18
117	Relaxivity modulation in Gd-functionalised mesoporous silicas. Chemical Communications, 2009, , 1246.	4.1	62
118	Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study. Physical Chemistry Chemical Physics, 2009, 11, 10087.	2.8	28
119	Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Composites Science and Technology, 2008, 68, 1008-1014.	7.8	56
120	Titanosilsesquioxane Anchored on Mesoporous Silicas: A Novel Approach for the Preparation of Heterogeneous Catalysts for Selective Oxidations. Chemistry - A European Journal, 2008, 14, 8098-8101.	3.3	44
121	Polypropylene containing Ti- and Al-polyhedral oligomeric silsesquioxanes: crystallization process and thermal properties. Nanotechnology, 2008, 19, 475701.	2.6	37
122	A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ti-containing aminopropylisobutyl-POSS. Dalton Transactions, 2008, , 36-39.	3.3	47
123	Synthesis and Characterisation of Metal Isobutylsilsesquioxanes and Their Role as Inorganic–Organic Nanoadditives for Enhancing Polymer Thermal Stability. European Journal of Inorganic Chemistry, 2007, 2007, 585-591.	2.0	63
124	In situsimultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions. Journal of Applied Crystallography, 2007, 40, 684-693.	4.5	49
125	Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochimica Acta, 2006, 440, 36-42.	2.7	336