Mihai Covasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394770/publications.pdf

Version: 2024-02-01

34 2,096 20 27
papers citations h-index g-index

38 38 38 2861 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. International Journal of Molecular Sciences, 2022, 23, 1806.	4.1	80
2	Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines, 2022, 10, 436.	3.2	71
3	Gut Microbiota and Complications of Type-2 Diabetes. Nutrients, 2022, 14, 166.	4.1	128
4	Do Diet and Dietary Supplements Mitigate Clinical Outcomes in COVID-19?. Nutrients, 2022, 14, 1909.	4.1	11
5	Introduction and Characteristics of SARS-CoV-2 in North-East of Romania During the First COVID-19 Outbreak. Frontiers in Microbiology, 2021, 12, 654417.	3.5	6
6	Do Gut Microbes Taste?. Nutrients, 2021, 13, 2581.	4.1	22
7	Emergence of the First Strains of SARS-CoV-2 Lineage B.1.1.7 in Romania: Genomic Analysis. Jmirx Med, 2021, 2, e28049.	0.4	4
8	Authors' Response to Peer Reviews of "Emergence of the First Strains of SARS-CoV-2 Lineage B.1.1.7 in Romania: Genomic Analysisâ€, Jmirx Med, 2021, 2, e32293.	0.4	0
9	Using Salivary MMP-9 to Successfully Quantify Periodontal Inflammation during Orthodontic Treatment. Journal of Clinical Medicine, 2021, 10, 379.	2.4	15
10	A Conservative Replacement in the Transmembrane Domain of SARS-CoV-2 ORF7a as a Putative Risk Factor in COVID-19. Biology, 2021, 10, 1276.	2.8	12
11	Microbiota Transplant in the Treatment of Obesity and Diabetes: Current and Future Perspectives. Frontiers in Microbiology, 2020, 11, 590370.	3.5	40
12	Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers, 2020, 12, 2417.	4.5	225
13	Irisin: A Hope in Understanding and Managing Obesity and Metabolic Syndrome. Frontiers in Endocrinology, 2019, 10, 524.	3.5	172
14	Probiotics: How Effective Are They in the Fight against Obesity?. Nutrients, 2019, 11, 258.	4.1	121
15	Neuro-hormonal mechanisms underlying changes in reward related behaviors following weight loss surgery: Potential pharmacological targets. Biochemical Pharmacology, 2019, 164, 106-114.	4.4	30
16	Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Frontiers in Endocrinology, 2019, 10, 82.	3.5	66
17	Metagenomic Insights on the Role of Gut Microbiota in Type-2 Diabetes. , 2019, , .		0
18	Evaluation of Metabolic Syndrome in Type-2 Diabetes Mellitus and the Role of Gut Microbiota: the microDIAB Study. , 2019 , , .		0

#	Article	IF	CITATIONS
19	Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity, 2018, 26, 801-809.	3.0	110
20	Association between telomere length and diabetes mellitus: A meta-analysis. Journal of International Medical Research, 2016, 44, 1156-1173.	1.0	107
21	Impaired GLP-1 signaling contributes to reduced sensitivity to duodenal nutrients in obesity-prone rats during high-fat feeding. Obesity, 2015, 23, 2260-2268.	3.0	16
22	Effect of Diet on Preference and Intake of Sucrose in Obese Prone and Resistant Rats. PLoS ONE, 2014, 9, e111232.	2.5	32
23	Replication of Obesity and Associated Signaling Pathways Through Transfer of Microbiota From Obese-Prone Rats. Diabetes, 2014, 63, 1624-1636.	0.6	171
24	Emerging roles of lactic acid bacteria in protection against colorectal cancer. World Journal of Gastroenterology, 2014, 20, 7878.	3.3	185
25	HFâ€feedingâ€induced endoplasmic reticulum stress links metabolic syndrome (1107.11). FASEB Journal, 2014, 28, 1107.11.	0.5	0
26	Impaired enteroendocrine cells differentiation signaling pathways through microbiota transfer (1107.12). FASEB Journal, 2014, 28, 1107.12.	0.5	0
27	The modulatory role of high fat feeding on gastrointestinal signals in obesity. Journal of Nutritional Biochemistry, 2013, 24, 1663-1677.	4.2	77
28	Combination of Obesity and High-Fat Feeding Diminishes Sensitivity to GLP-1R Agonist Exendin-4. Diabetes, 2013, 62, 2410-2415.	0.6	52
29	Increased Oral Detection, but Decreased Intestinal Signaling for Fats in Mice Lacking Gut Microbiota. PLoS ONE, 2012, 7, e39748.	2.5	142
30	Highâ€fat feeding leads to decreased responsiveness to the GLPâ€1 analogue, exendinâ€4, in obesityâ€prone (OP) rats. FASEB Journal, 2012, 26, 639.14.	0.5	0
31	Gut microbiota modulates metabolic and nutrient sensing signaling pathways in obesity. FASEB Journal, 2012, 26, 830.5.	0.5	0
32	Deficits in gastrointestinal responses controlling food intake and body weight. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1423-R1439.	1.8	54
33	Increased oral and decreased intestinal sensitivity to sucrose in obese, prediabetic CCK-A receptor-deficient OLETF rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R292-R300.	1.8	58
34	Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R166-R170.	1.8	88