Vincent Humblot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394739/publications.pdf

Version: 2024-02-01

95 papers

3,612 citations

32 h-index 58 g-index

100 all docs

 $\begin{array}{c} 100 \\ \\ \text{docs citations} \end{array}$

100 times ranked 5163 citing authors

#	Article	IF	CITATIONS
1	Homogeneous supported monolayer from microbial glycolipid biosurfactant. Journal of Molecular Liquids, 2022, 345, 117827.	2.3	O
2	Optimization and Antibacterial Response of N-Halamine Coatings Based on Polydopamine. Colloids and Interfaces, 2022, 6, 9.	0.9	4
3	Strategies for Antimicrobial Peptides Immobilization on Surfaces to Prevent Biofilm Growth on Biomedical Devices. Antibiotics, 2022, 11, 13.	1.5	18
4	Gold, Silver, and Iron Oxide Nanoparticle Incorporation into Silk Hydrogels for Biomedical Applications: Elaboration, Structure, and Properties. ACS Biomaterials Science and Engineering, 2021, 7, 2358-2371.	2.6	10
5	A Graftable Quaternary Ammonium Biocidal Polymer Reduces Biofilm Formation and Ensures Biocompatibility of Medical Devices. Advanced Materials Interfaces, 2021, 8, 2001516.	1.9	7
6	Binding and 2D organization of arginine on Cu(1Â1Â0). Applied Surface Science, 2020, 509, 144865.	3.1	2
7	Cellulose fibers modification through metal-free click chemistry for the elaboration of versatile functional surfaces. European Polymer Journal, 2020, 135, 109866.	2.6	7
8	Antibacterial properties of glycosylated surfaces: variation of the glucosidal moiety and fatty acid conformation of grafted microbial glycolipids. Molecular Systems Design and Engineering, 2020, 5, 1307-1316.	1.7	8
9	Functional Characterization of Temporin-SHe, a New Broad-Spectrum Antibacterial and Leishmanicidal Temporin-SH Paralog from the Sahara Frog (Pelophylax saharicus). International Journal of Molecular Sciences, 2020, 21, 6713.	1.8	16
10	A New Antibacterial <i>N</i> -Halamine Coating Based on Polydopamine. Langmuir, 2020, 36, 11005-11014.	1.6	23
11	Influence of the grafting process on the orientation and the reactivity of azide-terminated monolayers onto silica surface. Applied Surface Science, 2020, 527, 146778.	3.1	17
12	In situ surface imaging: High temperature environmental SEM study of the surface changes during heat treatment of an Al Si coated boron steel. Materials Characterization, 2020, 163, 110266.	1.9	15
13	A simple way to graft a bioactive polymer – Polystyrene sodium sulfonate on silicone surfaces. European Polymer Journal, 2020, 128, 109608.	2.6	11
14	Thiol-Poly(Sodium Styrene Sulfonate) (PolyNaSS-SH) Gold Complexes: From a Chemical Design to a One-Step Synthesis of Hybrid Gold Nanoparticles and Their Interaction with Human Proteins. ACS Omega, 2020, 5, 8137-8145.	1.6	4
15	EcDBS1R6: A novel cationic antimicrobial peptide derived from a signal peptide sequence. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129633.	1.1	12
16	Covalent Grafting of Polyoxometalate Hybrids onto Flat Silicon/Silicon Oxide: Insights from POMs Layers on Oxides. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48109-48123.	4.0	12
17	Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 178-190.	1.4	32
18	One-pot synthesis of a new generation of hybrid bisphosphonate polyoxometalate gold nanoparticles as antibiofilm agents. Nanoscale Advances, 2019, 1, 3400-3405.	2.2	14

#	Article	IF	Citations
19	Chemical nature and thermal decomposition behavior of tartaric acid multilayers on rutile TiO2(110). Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 051803.	0.6	О
20	Adsorption of a chiral modifier on an oxide surface: Chemical nature of tartaric acid on rutile TiO2 (110). Applied Surface Science, 2019, 493, 1134-1141.	3.1	5
21	Electrospun Poly(ε-caprolactone) Fiber Scaffolds Functionalized by the Covalent Grafting of a Bioactive Polymer: Surface Characterization and Influence on in Vitro Biological Response. ACS Omega, 2019, 4, 17194-17208.	1.6	23
22	Redox-Triggered Control of Cell Adhesion and Deadhesion on Poly(lysine)-g-poly(ethylene oxide) Adlayers. ACS Applied Bio Materials, 2019, 2, 4367-4376.	2.3	0
23	Charge transport through redox active [H ₇ P ₈ W ₄₈ O ₁₈₄] ^{33a^'} polyoxometalates self-assembled onto gold surfaces and gold nanodots. Nanoscale, 2019, 11, 1863-1878.	2.8	25
24	Engineering of Antimicrobial Surfaces by Using Temporin Analogs to Tune the Biocidal/antiadhesive Effect. Molecules, 2019, 24, 814.	1.7	13
25	Nanoscale antiadhesion properties of sophorolipid-coated surfaces against pathogenic bacteria. Nanoscale Horizons, 2019, 4, 975-982.	4.1	18
26	Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale, 2019, 11, 8906-8917.	2.8	109
27	Site-specific grafting on titanium surfaces with hybrid temporin antibacterial peptides. Journal of Materials Chemistry B, 2018, 6, 1782-1790.	2.9	26
28	In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature Communications, 2018, 9, 1490.	5.8	179
29	A fullerene helical peptide: synthesis, characterization and formation of self-assembled monolayers on gold surfaces. New Journal of Chemistry, 2018, 42, 19423-19432.	1.4	4
30	Probing the in-air growth of large area of 3D functional structures into a 2D supramolecular nanoporous network. Chemical Communications, 2018, 54, 10068-10071.	2.2	7
31	Supramolecular chiral self-assemblies of Gly–Pro dipeptides on metallic fcc(110) surfaces. Faraday Discussions, 2017, 204, 69-81.	1.6	5
32	Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids and Surfaces B: Biointerfaces, 2017, 157, 325-334.	2.5	42
33	Bioactive peptides grafted silicone dressings: A simple and specific method. Materials Today Chemistry, 2017, 4, 73-83.	1.7	22
34	Mechanical properties of nanostructured films with an ultralow volume fraction of hard phase. Polymer, 2017, 109, 187-196.	1.8	29
35	Supramolecular effects in self-assembled monolayers: general discussion. Faraday Discussions, 2017, 204, 123-158.	1.6	2
36	Deciphering the Adsorption Mechanisms of RGD Subunits: <scp>l</scp> -Aspartic Acid on Cu(110). Journal of Physical Chemistry C, 2017, 121, 15842-15850.	1.5	7

#	Article	IF	Citations
37	Sulfamide chemistry applied to the functionalization of self-assembled monolayers on gold surfaces. Beilstein Journal of Organic Chemistry, 2017, 13, 648-658.	1.3	5
38	Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS ONE, 2017, 12, e0174024.	1.1	48
39	Surface-induced assembly of sophorolipids. Physical Chemistry Chemical Physics, 2017, 19, 15227-15238.	1.3	8
40	Tuning the Surface Chirality of Adsorbed Gly-Pro Dipeptide/Cu(110) by Changing Its Chemical Form via Electrospray Deposition. Langmuir, 2016, 32, 13759-13763.	1.6	10
41	UHV Deposition of the Gly-Pro Dipeptide on Cu(110) by Sublimation or Electrospray Ionization. Journal of Physical Chemistry C, 2016, 120, 27364-27368.	1.5	8
42	Selective amino acid substitution reduces cytotoxicity of the antimicrobial peptide mastoparan. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2699-2708.	1.4	63
43	Simple and Specific Grafting of Antibacterial Peptides on Silicone Catheters. Advanced Healthcare Materials, 2016, 5, 3067-3073.	3.9	39
44	An Experimental and Theoretical Approach to Investigate the Effect of Chain Length on Aminothiol Adsorption and Assembly on Gold. Chemistry - A European Journal, 2015, 21, 14555-14561.	1.7	27
45	Surface Chirality of Glyâ€Pro Dipeptide Adsorbed on a Cu(110) Surface. Chirality, 2015, 27, 411-416.	1.3	4
46	Potent antimicrobial peptides against Legionella pneumophila and its environmental host, Acanthamoeba castellanii. Applied Microbiology and Biotechnology, 2015, 99, 4879-4891.	1.7	13
47	Surface functionalization by covalent immobilization of an innovative carvacrol derivative to avoid fungal biofilm formation. AMB Express, 2015, 5, 9.	1.4	5
48	Biocidal Properties of a Glycosylated Surface: Sophorolipids on Au(111). ACS Applied Materials & Amp; Interfaces, 2015, 7, 18086-18095.	4.0	24
49	Co-grafting of antiadhesive and antimicrobial agents onto UV-micropatterned copper surfaces. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1120-1130.	2.5	1
50	l-Methionine adsorption on Cu(110), binding and geometry of the amino acid as a function of coverage. Surface Science, 2015, 632, 88-92.	0.8	18
51	Temporin‧Ha peptides grafted on gold surfaces display antibacterial activity. Journal of Peptide Science, 2014, 20, 563-569.	0.8	25
52	Effect of SAM chain length and binding functions on protein adsorption: \hat{l}^2 -Lactoglobulin and apo-transferrin on gold. Colloids and Surfaces B: Biointerfaces, 2014, 116, 489-496.	2.5	29
53	Multi-stimuli responsive supramolecular diblock copolymers. Polymer Chemistry, 2014, 5, 1031-1036.	1.9	30
54	Low-energy electron induced resonant loss of aromaticity: consequences on cross-linking in terphenylthiol SAMs. Physical Chemistry Chemical Physics, 2014, 16, 1050-1059.	1.3	34

#	Article	IF	Citations
55	Characterization of Two-Dimensional Chiral Self-Assemblies <scp>l</scp> - and <scp>d</scp> -Methionine on Au(111). Langmuir, 2014, 30, 203-212.	1.6	41
56	Walking peptide on Au(110) surface: Origin and nature of interfacial process. Surface Science, 2014, 628, 21-29.	0.8	10
57	Selective terminal function modification of SAMs driven by low-energy electrons (0–15 eV). Physical Chemistry Chemical Physics, 2013, 15, 7220.	1.3	10
58	Chiral Recognition of <scp>l</scp> -Gramicidine on Chiraly Methionine-Modified Au(111). Journal of Physical Chemistry Letters, 2013, 4, 1816-1820.	2.1	6
59	BSA adsorption on aliphatic and aromatic acid SAMs: Investigating the effect of residual surface charge and sublayer nature. Colloids and Surfaces B: Biointerfaces, 2013, 109, 136-142.	2.5	31
60	Drastic Au (111) Surface Reconstruction upon Insulin Growth Factor Tripeptide Adsorption. Journal of the American Chemical Society, 2012, 134, 6579-6583.	6.6	24
61	Co-Grafting of Amino–Poly(ethylene glycol) and Magainin I on a TiO ₂ Surface: Tests of Antifouling and Antibacterial Activities. Journal of Physical Chemistry B, 2012, 116, 13839-13847.	1.2	55
62	Antibacterial surfaces developed from bio-inspired approaches. Acta Biomaterialia, 2012, 8, 1670-1684.	4.1	310
63	Elaboration of antibiofilm surfaces functionalized with antifungal-cyclodextrin inclusion complexes. FEMS Immunology and Medical Microbiology, 2012, 65, 257-269.	2.7	17
64	Modifying protein adsorption by layers of glutathione pre-adsorbed on Au(111). Journal of Physics Condensed Matter, 2011, 23, 484002.	0.7	9
65	Chemical Modifications of Au/SiO ₂ Template Substrates for Patterned Biofunctional Surfaces. Langmuir, 2011, 27, 678-685.	1.6	41
66	RAIRS under ultrahigh vacuum conditions on metal surfaces. , 2011, , 1-26.		0
67	Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Applied Microbiology and Biotechnology, 2011, 89, 623-634.	1.7	54
68	Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids and Surfaces B: Biointerfaces, 2011, 84, 301-309.	2.5	100
69	Synchrotron infrared interface science. , 2011, , 145-166.		0
70	Peptide Interactions with Metal and Oxide Surfaces. Accounts of Chemical Research, 2010, 43, 1297-1306.	7.6	179
71	Bioengineering of stainless steel surface by covalent immobilization of enzymes. Physical characterization and interfacial enzymatic activity. Journal of Colloid and Interface Science, 2010, 349, 13-18.	5.0	44
72	Chiral self-assemblies of amino-acid molecules: <scp>D</scp> - and <scp>L</scp> -methionine on Au(111) surface. Applied Physics Letters, 2010, 97, .	1.5	33

#	Article	IF	Citations
73	An OEGylated thiol monolayer for the tethering of liposomes and the study of liposome interactions. Talanta, 2010, 81, 1153-1161.	2.9	17
74	Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nature Chemistry, 2009, 1, 409-414.	6.6	146
75	The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers. Biomaterials, 2009, 30, 3503-3512.	5 . 7	173
76	Adsorption of Di- and Tripeptides on Au(110) under Ultrahigh Vacuum Conditions. 1. Polarization Modulation Reflection Absorption Infrared Spectroscopy and X-ray Photoelectron Spectroscopy Characterization. Journal of Physical Chemistry C, 2009, 113, 9336-9344.	1.5	31
77	Grafting of Lysozyme and/or Poly(ethylene glycol) to Prevent Biofilm Growth on Stainless Steel Surfaces. Journal of Physical Chemistry B, 2009, 113, 2101-2109.	1.2	115
78	Stability of Binary SAMs Formed by ω-Acid and Alcohol Functionalized Thiol Mixtures. Langmuir, 2009, 25, 9980-9985.	1.6	32
79	Elucidation of the low coverage chiral adsorption assembly of l-lysine on Cu(110) surface: A theoretical study. Surface Science, 2008, 602, 1032-1039.	0.8	29
80	Glutathione adsorption from UHV to the liquid phase at various pH on gold and subsequent modification of protein interaction. Surface and Interface Analysis, 2008, 40, 395-399.	0.8	36
81	Exploring the reactivity of mixed ωâ€functionalized undecanethiol selfâ€assembled monolayers—A DFT study. International Journal of Quantum Chemistry, 2008, 108, 1792-1795.	1.0	17
82	Adsorption of a tripeptide, GSH, on Au(111) under UHV conditions; PM-RAIRS and low T-XPS characterisation. Surface Science, 2008, 602, 2256-2263.	0.8	38
83	Characterization of ω-Functionalized Undecanethiol Mixed Self-Assembled Monolayers on Au(111):  A Combined Polarization Modulation Infrared Reflectionâ°Absorption Spectroscopy/X-ray Photoelectron Spectroscopy/Periodic Density Functional Theory Study. Journal of Physical Chemistry C, 2008, 112, 182-190.	1.5	61
84	Salt Concentration and pH-Dependent Adsorption of Two Polypeptides on Planar and Divided Alumina Surfaces. In Situ IR Investigations. Langmuir, 2007, 23, 2463-2471.	1.6	18
85	Amino acid and peptides on Cu(110) surfaces: Chemical and structural analyses of I-lysine. Surface Science, 2007, 601, 4189-4194.	0.8	41
86	Adsorption ofl-Lysine on Cu(110):Â A RAIRS Study from UHV to the Liquid Phase. Langmuir, 2006, 22, 3089-3096.	1.6	77
87	Chiral metal surfaces from the adsorption of chiral and achiral molecules. Applied Surface Science, 2005, 241, 150-156.	3.1	38
88	(,)-Tartaric acid on Ni(110): the dynamic nature of chiral adsorption motifs. Journal of Catalysis, 2004, 228, 130-140.	3.1	46
89	Conveying chirality onto the electronic structure of achiral metals: (R,R)-tartaric acid on nickel. Surface Science, 2004, 554, 141-149.	0.8	51
90	Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Progress in Surface Science, 2004, 76, 1-19.	3.8	121

#	Article	IF	CITATIONS
91	Local and Global Chirality at Surfaces:Â Succinic Acid versus Tartaric Acid on Cu(110). Journal of the American Chemical Society, 2004, 126, 6460-6469.	6.6	136
92	Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Progress in Surface Science, 2004, 76, $1-1$.	3.8	5
93	Synchrotron far-infrared RAIRS studies of complex molecules on Cu(110). Surface Science, 2003, 537, 253-264.	0.8	27
94	From Local Adsorption Stresses to Chiral Surfaces:  (R,R)-Tartaric Acid on Ni(110). Journal of the American Chemical Society, 2002, 124, 503-510.	6.6	193
95	Chemical Transformations, Molecular Transport, and Kinetic Barriers in Creating the Chiral Phase of (R, R)-Tartaric Acid on Cu(110). Journal of Catalysis, 2002, 205, 123-134.	3.1	79