Theo D Palmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394645/publications.pdf

Version: 2024-02-01

89 papers 22,303 citations

52 h-index 84 g-index

96 all docs 96 docs citations

96 times ranked 21832 citing authors

#	Article	IF	CITATIONS
1	Functional neurogenesis in the adult hippocampus. Nature, 2002, 415, 1030-1034.	13.7	2,558
2	Inflammatory Blockade Restores Adult Hippocampal Neurogenesis. Science, 2003, 302, 1760-1765.	6.0	2,182
3	Vascular niche for adult hippocampal neurogenesis. Journal of Comparative Neurology, 2000, 425, 479-494.	0.9	1,700
4	Irradiation induces neural precursor-cell dysfunction. Nature Medicine, 2002, 8, 955-962.	15.2	1,118
5	The Adult Rat Hippocampus Contains Primordial Neural Stem Cells. Molecular and Cellular Neurosciences, 1997, 8, 389-404.	1.0	1,005
6	Fibroblast Growth Factor-2 Activates a Latent Neurogenic Program in Neural Stem Cells from Diverse Regions of the Adult CNS. Journal of Neuroscience, 1999, 19, 8487-8497.	1.7	844
7	Proliferation and Differentiation of Progenitor Cells Throughout the Intact Adult Rat Spinal Cord. Journal of Neuroscience, 2000, 20, 2218-2228.	1.7	724
8	VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 2003, 18, 2803-2812.	1.2	693
9	LRRK2 Mutant iPSC-Derived DA Neurons Demonstrate Increased Susceptibility to Oxidative Stress. Cell Stem Cell, 2011, 8, 267-280.	5.2	668
10	Multipotent progenitor cells in the adult dentate gyrus. , 1998, 36, 249-266.		635
10	Multipotent progenitor cells in the adult dentate gyrus. , 1998, 36, 249-266. Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552.	3.8	635
		3.8	
11	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Research, 2003, 63,		606
11 12	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Research, 2003, 63, 4021-7.	0.4	538
11 12 13	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Research, 2003, 63, 4021-7. FoxO3 Regulates Neural Stem Cell Homeostasis. Cell Stem Cell, 2009, 5, 527-539. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome.	0.4 5.2	538 526
11 12 13 14	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Research, 2003, 63, 4021-7. FoxO3 Regulates Neural Stem Cell Homeostasis. Cell Stem Cell, 2009, 5, 527-539. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 2011, 17, 1657-1662.	0.4 5.2 15.2	538 526 521
11 12 13 14	Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron, 2004, 42, 535-552. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Research, 2003, 63, 4021-7. FoxO3 Regulates Neural Stem Cell Homeostasis. Cell Stem Cell, 2009, 5, 527-539. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 2011, 17, 1657-1662. Progenitor cells from human brain after death. Nature, 2001, 411, 42-43. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem	0.4 5.2 15.2	538 526 521 436

#	Article	IF	Citations
19	Radiation injury and neurogenesis. Current Opinion in Neurology, 2003, 16, 129-134.	1.8	300
20	Wnt-mediated self-renewal of neural stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16970-16975.	3.3	286
21	Widespread Integration and Survival of Adult-Derived Neural Progenitor Cells in the Developing Optic Retina. Molecular and Cellular Neurosciences, 1998, 12, 340-348.	1.0	283
22	Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Annals of Neurology, 2007, 62, 515-520.	2.8	261
23	IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Molecular and Cellular Neurosciences, 2003, 24, 23-40.	1.0	258
24	SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate \hat{l}_{\pm} -Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 2011, 6, e26159.	1.1	257
25	RNA–protein interaction detection in living cells. Nature Methods, 2018, 15, 207-212.	9.0	234
26	Neurogenesis in Rats After Focal Cerebral Ischemia is Enhanced by Indomethacin. Stroke, 2005, 36, 2718-2724.	1.0	228
27	Transplanted Stem Cell-Secreted Vascular Endothelial Growth Factor Effects Poststroke Recovery, Inflammation, and Vascular Repair. Stem Cells, 2011, 29, 274-285.	1.4	219
28	Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Molecular Systems Biology, 2006, 2, 37.	3.2	204
29	Sleep Restriction Suppresses Neurogenesis Induced by Hippocampus-Dependent Learning. Journal of Neurophysiology, 2005, 94, 4224-4233.	0.9	198
30	Immune Influence on Adult Neural Stem Cell Regulation and Function. Neuron, 2009, 64, 79-92.	3.8	198
31	Radiation Response of Neural Precursor Cells: Linking Cellular Sensitivity to Cell Cycle Checkpoints, Apoptosis and Oxidative Stress. Radiation Research, 2004, 161, 17-27.	0.7	190
32	Radiation injury and neurogenesis. Current Opinion in Neurology, 2003, 16, 129-134.	1.8	187
33	Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Molecular Psychiatry, 2014, 19, 1275-1283.	4.1	175
34	NEUROSCIENCE: Cellular Interactions in the Stem Cell Niche. Science, 2004, 304, 1253-1255.	6.0	138
35	Novel Neuronal Phenotypes from Neural Progenitor Cells. Journal of Neuroscience, 2004, 24, 2886-2897.	1.7	132
36	Enriched Monolayer Precursor Cell Cultures from Micro-Dissected Adult Mouse Dentate Gyrus Yield Functional Granule Cell-Like Neurons. PLoS ONE, 2007, 2, e388.	1.1	127

#	Article	IF	CITATIONS
37	Chronically Increased Transforming Growth Factor- \hat{l}^21 Strongly Inhibits Hippocampal Neurogenesis in Aged Mice. American Journal of Pathology, 2006, 169, 154-164.	1.9	124
38	Human 3D cellular model of hypoxic brain injury of prematurity. Nature Medicine, 2019, 25, 784-791.	15.2	123
39	A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Molecular and Cellular Neurosciences, 2009, 41, 409-419.	1.0	114
40	A Protocol for Isolation and Enriched Monolayer Cultivation of Neural Precursor Cells from Mouse Dentate Gyrus. Frontiers in Neuroscience, 2011, 5, 89.	1.4	110
41	Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis. Brain, Behavior, and Immunity, 2013, 30, 45-53.	2.0	109
42	New roles for astrocytes: The nightlife of an â€~astrocyte'. La vida loca!. Trends in Neurosciences, 2003, 26, 597-603.	4.2	104
43	Adult neurogenesis: a compensatory mechanism for neuronal damage. European Archives of Psychiatry and Clinical Neuroscience, 2001, 251, 152-158.	1.8	97
44	The CCR2/CCL2 Interaction Mediates the Transendothelial Recruitment of Intravascularly Delivered Neural Stem Cells to the Ischemic Brain. Stroke, 2011, 42, 2923-2931.	1.0	93
45	Placental TNF- $\hat{l}\pm$ Signaling in Illness-Induced Complications of Pregnancy. American Journal of Pathology, 2011, 178, 2802-2810.	1.9	91
46	Murine Embryonic Stem Cell-Derived Pyramidal Neurons Integrate into the Cerebral Cortex and Appropriately Project Axons to Subcortical Targets. Journal of Neuroscience, 2010, 30, 894-904.	1.7	87
47	Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/l²-catenin–responsive neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7324-7329.	3.3	87
48	Neurogenesis and Alterations of Neural Stem Cells in Mouse Models of Cerebral Amyloidosis. American Journal of Pathology, 2008, 172, 1520-1528.	1.9	82
49	The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease. Trends in Molecular Medicine, 1999, 5, 474-480.	2.6	73
50	Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. Journal of Neuroscience Research, 2008, 86, 873-882.	1.3	71
51	Functional Engraftment of the Medial Ganglionic Eminence Cells in Experimental Stroke Model. Cell Transplantation, 2009, 18, 815-826.	1.2	66
52	Mitochondrial Protection Attenuates Inflammation-Induced Impairment of Neurogenesis <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2010, 30, 12242-12251.	1.7	62
53	Adult Neurogenesis and the Vascular Nietzsche. Neuron, 2002, 34, 856-858.	3.8	61
54	Cellular repair of CNS disorders: an immunological perspective. Human Molecular Genetics, 2008, 17, R84-R92.	1.4	53

#	Article	IF	CITATIONS
55	PPAR \hat{I}^3 activation prevents impairments in spatial memory and neurogenesis following transient illness. Brain, Behavior, and Immunity, 2013, 29, 28-38.	2.0	53
56	"Females Are Not Just â€~Protected' Males― Sex-Specific Vulnerabilities in Placenta and Brain after Prenatal Immune Disruption. ENeuro, 2019, 6, ENEURO.0358-19.2019.	0.9	52
57	PET Imaging of Stroke-Induced Neuroinflammation in Mice Using [18F]PBR06. Molecular Imaging and Biology, 2014, 16, 109-117.	1.3	50
58	Agingâ€like changes in the transcriptome of irradiated microglia. Glia, 2015, 63, 754-767.	2.5	50
59	Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain, Behavior, and Immunity, 2013, 30, 33-44.	2.0	48
60	Expression of IL-17B in neurons and evaluation of its possible role in the chromosome 5q-linked form of Charcot–Marie–Tooth disease. Neuromuscular Disorders, 2002, 12, 141-150.	0.3	47
61	Stem Cell-derived Neural Stem/Progenitor Cell Supporting Factor Is an Autocrine/Paracrine Survival Factor for Adult Neural Stem/Progenitor Cells. Journal of Biological Chemistry, 2003, 278, 35491-35500.	1.6	47
62	Neurodegeneration and cell replacement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 153-170.	1.8	46
63	The Role of the Microenvironmental Niche in Declining Stem-Cell Functions Associated with Biological Aging. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a025874.	2.9	41
64	Efficient expression of a protein coding gene under the control of an RNA polymerase I promoter. Nucleic Acids Research, 1993, 21, 3451-3457.	6.5	39
65	Stereotypical Alterations in Cortical Patterning Are Associated with Maternal Illness-Induced Placental Dysfunction. Journal of Neuroscience, 2013, 33, 16874-16888.	1.7	39
66	Neuronal Rac1 Is Required for Learning-Evoked Neurogenesis. Journal of Neuroscience, 2013, 33, 12229-12241.	1.7	37
67	Phosphorylation of $\hat{l}\pm B$ -crystallin supports reactive astrogliosis in demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1745-E1754.	3.3	37
68	Aberrant calcium channel splicing drives defects in cortical differentiation in Timothy syndrome. ELife, 2019, 8, .	2.8	35
69	MHC Mismatch Inhibits Neurogenesis and Neuron Maturation in Stem Cell Allografts. PLoS ONE, 2011, 6, e14787.	1.1	33
70	High-Level Human Adenosine Deaminase Expression in Dog Skin Fibroblasts Is Not Sustained Following Transplantation. Human Gene Therapy, 1993, 4, 3-7.	1.4	30
71	16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. ELife, 2020, 9, .	2.8	30
72	Adult neural progenitor cells reactivate superbursting in mature neural networks. Experimental Neurology, 2012, 234, 20-30.	2.0	27

#	Article	lF	Citations
73	Prolonged Expression of Therapeutic Levels of Human Granulocyte Colony-Stimulating Factor in Rats Following Gene Transfer to Skeletal Muscle. Human Gene Therapy, 1996, 7, 1423-1429.	1.4	23
74	Natural killer cell-activating receptor NKG2D mediates innate immune targeting of allogeneic neural progenitor cell grafts. Stem Cells, 2013, 31, 1829-1839.	1.4	23
75	Long-term transgene expression in mouse neural progenitor cells modified with i-C31 integrase. Journal of Neuroscience Methods, 2008, 173, 299-305.	1.3	22
76	Adult-generated neurons born during chronic social stress are uniquely adapted to respond to subsequent chronic social stress. Molecular Psychiatry, 2019, 24, 1178-1188.	4.1	22
77	Examining Sex Differences in the Human Placental Transcriptome During the First Fetal Androgen Peak. Reproductive Sciences, 2021, 28, 801-818.	1.1	22
78	Characterization of axon guidance cue sensitivity of human embryonic stem cell-derived dopaminergic neurons. Molecular and Cellular Neurosciences, 2010, 45, 324-334.	1.0	20
79	A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations. Cell Reports, 2017, 18, 2533-2546.	2.9	20
80	Vacuum soft lithography to direct neuronal polarization. Soft Matter, 2011, 7, 343-347.	1.2	18
81	The Relationship Between Serial [18 F]PBR06 PET Imaging of Microglial Activation and Motor Function Following Stroke in Mice. Molecular Imaging and Biology, 2014, 16, 821-829.	1.3	18
82	Gene Transfer as an Approach to Cure Patients with Hemophilia A or B. Current Studies in Hematology and Blood Transfusion, 1991, 58, 59-62.	0.2	10
83	Where, oh where, have my stem cells gone?. Trends in Neurosciences, 2002, 25, 225-227.	4.2	10
84	Copernican stem cells: Regulatory constellations in adult hippocampal neurogenesis. Journal of Cellular Biochemistry, 2003, 88, 41-50.	1.2	10
85	Characterization of Brain Dysfunction Induced by Bacterial Lipopeptides That Alter Neuronal Activity and Network in Rodent Brains. Journal of Neuroscience, 2018, 38, 10672-10691.	1.7	8
86	Vascular niche for adult hippocampal neurogenesis. , 0, .		6
87	The Use of Neural Progenitor Cells for Therapy in the CNS Disorders. , 1999, , 183-V.		2
88	Mobilization of Neural Precursors in the Adult Central Nervous System., 2006,, 343-369.		1
89	Mobilization of Neural Stem Cells in the Adult Central Nervous System., 2012, , 289-328.		1