Agnieszka Robaszkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394349/publications.pdf

Version: 2024-02-01

39 papers 1,265 citations

430442 18 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

2482 citing authors

#	Article	IF	CITATIONS
1	Activation of ABCC Genes by Cisplatin Depends on the CoREST Occurrence at Their Promoters in A549 and MDA-MB-231 Cell Lines. Cancers, 2022, 14, 894.	1.7	10
2	Cells Lacking PA200 Adapt to Mitochondrial Dysfunction by Enhancing Glycolysis via Distinct Opa1 Processing. International Journal of Molecular Sciences, 2021, 22, 1629.	1.8	4
3	PARP Traps Rescue the Pro-Inflammatory Response of Human Macrophages in the In Vitro Model of LPS-Induced Tolerance. Pharmaceuticals, 2021, 14, 170.	1.7	3
4	LSD1 Facilitates Pro-Inflammatory Polarization of Macrophages by Repressing Catalase. Cells, 2021, 10, 2465.	1.8	6
5	CBP/p300 Bromodomain Inhibitor–I–CBP112 Declines Transcription of the Key ABC Transporters and Sensitizes Cancer Cells to Chemotherapy Drugs. Cancers, 2021, 13, 4614.	1.7	12
6	Effects of LSD1 Inhibition on Macrophage Specialization into a Pro-Inflammatory Phenotype. , 2021, 7, .		0
7	The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Cells, 2020, 9, 2040.	1.8	16
8	The proteasome activator PA200 regulates expression of genes involved in cell survival upon selective mitochondrial inhibition in neuroblastoma cells. Journal of Cellular and Molecular Medicine, 2020, 24, 6716-6730.	1.6	7
9	BRG1 Activates Proliferation and Transcription of Cell Cycle-Dependent Genes in Breast Cancer Cells. Cancers, 2020, 12, 349.	1.7	21
10	Analysis of maternal lineage structure of individuals from chamber graves placed in medieval cemetery in KaÅ,dus, Central Poland. HOMO- Journal of Comparative Human Biology, 2020, 71, 43-50.	0.3	3
11	PARP1 Co-Regulates EP300–BRG1-Dependent Transcription of Genes Involved in Breast Cancer Cell Proliferation and DNA Repair. Cancers, 2019, 11, 1539.	1.7	26
12	EP300-HDAC1-SWI/SNF functional unit defines transcription of some DNA repair enzymes during differentiation of human macrophages. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 198-208.	0.9	21
13	PARP1-LSD1 functional interplay controls transcription of SOD2 that protects human pro-inflammatory macrophages from death under an oxidative condition. Free Radical Biology and Medicine, 2019, 131, 218-224.	1.3	21
14	LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free Radical Biology and Medicine, 2019, 131, 184-196.	1.3	40
15	Diverse effect of BMP-2 homodimer on mesenchymal progenitors of different origin. Human Cell, 2018, 31, 139-148.	1.2	17
16	Redox control of cancer cell destruction. Redox Biology, 2018, 16, 59-74.	3.9	119
17	Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair. Redox Biology, 2018, 15, 316-326.	3.9	44
18	PARP1 facilitates EP300 recruitment to the promoters of the subset of RBL2-dependent genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 41-53.	0.9	8

#	Article	IF	Citations
19	Redox Profiling Reveals Clear Differences between Molecular Patterns of Wound Fluids from Acute and Chronic Wounds. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	20
20	PARP1 promoter links cell cycle progression with adaptation to oxidative environment. Redox Biology, 2018, 18, 1-5.	3.9	38
21	Analysis of medieval mtDNA from Napole cemetery provides new insights into the early history of Polish state. Annals of Human Biology, 2017, 44, 91-94.	0.4	1
22	Downregulation of PARP1 transcription by promoter-associated E2F4-RBL2-HDAC1-BRM complex contributes to repression of pluripotency stem cell factors in human monocytes. Scientific Reports, 2017, 7, 9483.	1.6	29
23	ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF- $\hat{\mathbb{P}}$ B-dependent transcription of IL- $\hat{\mathbb{P}}$ 1. Scientific Reports, 2016, 6, 21131.	1.6	35
24	Poly(ADP-ribose) in the bone: From oxidative stress signal to structural element. Free Radical Biology and Medicine, 2015, 82, 179-186.	1.3	9
25	HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells. Archives of Biochemistry and Biophysics, 2014, 548, 1-10.	1.4	8
26	The role of p38 signaling and poly(ADP-ribosyl)ation-induced metabolic collapse in the osteogenic differentiation-coupled cell death pathway. Free Radical Biology and Medicine, 2014, 76, 69-79.	1.3	20
27	Poly(ADP-ribose) signaling in cell death. Molecular Aspects of Medicine, 2013, 34, 1153-1167.	2.7	218
28	Hydrogen peroxide-induced poly(ADP-ribosyl)ation regulates osteogenic differentiation-associated cell death. Free Radical Biology and Medicine, 2012, 53, 1552-1564.	1.3	44
29	Chloric acid(I) affects antioxidant defense of lung epitelial cells. Toxicology in Vitro, 2011, 25, 1328-1334.	1.1	5
30	Detection of 3-chlorinated tyrosine residues in human cells by flow cytometry. Journal of Immunological Methods, 2011, 369, 141-145.	0.6	11
31	N-Chloroamino acids mediate the action of hypochlorite on A549 lung cancer cells in culture. Toxicology, 2010, 270, 112-120.	2.0	13
32	Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chemistry and Physics of Lipids, 2010, 163, 639-647.	1.5	14
33	The Role of Polyphenols, -Carotene, and Lycopene in the Antioxidative Action of the Extracts of Dried, Edible Mushrooms. Journal of Nutrition and Metabolism, 2010, 2010, 1-9.	0.7	42
34	Estimation of antioxidant capacity against peroxynitrite and hypochlorite with fluorescein. Talanta, 2010, 80, 2196-2198.	2.9	12
35	The effect of oral steroids with and without vitamin D ₃ on early efficacy of immunotherapy in asthmatic children. Clinical and Experimental Allergy, 2009, 39, 1830-1841.	1.4	71
36	Estimation of antioxidant capacity against pathophysiologically relevant oxidants using Pyrogallol Red. Biochemical and Biophysical Research Communications, 2009, 390, 659-661.	1.0	21

#	Article	IF	CITATIONS
37	N-chloroamino acids cause oxidative protein modifications in the erythrocyte membrane. Mechanisms of Ageing and Development, 2008, 129, 572-579.	2.2	30
38	Effect of N-chloroamino acids on the erythrocyte. Free Radical Research, 2008, 42, 30-39.	1.5	12
39	Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biology International, 2007, 31, 1245-1250.	1.4	232