
## Anna Maria Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394290/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Paradigms of Industry 4.0 and Circular Economy as Enabling Drivers for the Competitiveness of<br>Businesses and Territories: The Case of an Italian Ceramic Tiles Manufacturing Company. Social<br>Sciences, 2018, 7, 255. | 0.7 | 147       |
| 2  | Conventional and Microwave-Hydrothermal Synthesis of TiO2 Nanopowders. Journal of the American Ceramic Society, 2005, 88, 2639-2641.                                                                                           | 1.9 | 111       |
| 3  | Reaction Mechanism in Alumina/Chromia<br>(Al <sub>2</sub> O <sub>3</sub> –Cr <sub>2</sub> O <sub>3</sub> ) Solid Solutions Obtained by<br>Coprecipitation. Journal of the American Ceramic Society, 2000, 83, 2036-2040.       | 1.9 | 89        |
| 4  | Sustainability Transition in Industry 4.0 and Smart Manufacturing with the Triple-Layered Business<br>Model Canvas. Sustainability, 2020, 12, 2364.                                                                            | 1.6 | 87        |
| 5  | Microwaveâ€Hydrothermal Synthesis of Nanocrystalline Zirconia Powders. Journal of the American<br>Ceramic Society, 2001, 84, 2728-2730.                                                                                        | 1.9 | 82        |
| 6  | Identifying the Equilibrium Point between Sustainability Goals and Circular Economy Practices in an<br>Industry 4.0 Manufacturing Context Using Eco-Design. Social Sciences, 2019, 8, 241.                                     | 0.7 | 81        |
| 7  | Main Dimensions in the Building of the Circular Supply Chain: A Literature Review. Sustainability, 2020, 12, 2459.                                                                                                             | 1.6 | 80        |
| 8  | Crystallization of (Na <sub>2</sub> O–MgO)–CaO–Al <sub>2</sub> O <sub>3</sub> –SiO <sub>2</sub><br>Glassy Systems Formulated from Waste Products. Journal of the American Ceramic Society, 2000, 83,<br>2515-2520.             | 1.9 | 73        |
| 9  | Dynamic life cycle assessment (LCA) integrating life cycle inventory (LCI) and Enterprise resource planning (ERP) in an industry 4.0 environment. Journal of Cleaner Production, 2021, 286, 125314.                            | 4.6 | 71        |
| 10 | Poly(ε-caprolactone)-based nanocomposites: Influence of compatibilization on properties of<br>poly(ε-caprolactone)–silica nanocomposites. Composites Science and Technology, 2006, 66, 886-894.                                | 3.8 | 70        |
| 11 | Social Life-Cycle Assessment: A Review by Bibliometric Analysis. Sustainability, 2020, 12, 6211.                                                                                                                               | 1.6 | 66        |
| 12 | Synthesis of silica nanoparticles in a continuous-flow microwave reactor. Powder Technology, 2006, 167, 45-48.                                                                                                                 | 2.1 | 61        |
| 13 | Structural and Electrical Characterization of Polymeric Haloplumbate(II) Systems. Inorganic Chemistry, 1999, 38, 716-721.                                                                                                      | 1.9 | 55        |
| 14 | Waste treatment: an environmental, economic and social analysis with a new group fuzzy PROMETHEE approach. Clean Technologies and Environmental Policy, 2016, 18, 1317-1332.                                                   | 2.1 | 55        |
| 15 | Building a Sustainability Benchmarking Framework of Ceramic Tiles Based on Life Cycle Sustainability<br>Assessment (LCSA). Resources, 2019, 8, 11.                                                                             | 1.6 | 55        |
| 16 | Environmental assessment of a bottom-up hydrolytic synthesis of TiO <sub>2</sub> nanoparticles.<br>Green Chemistry, 2015, 17, 518-531.                                                                                         | 4.6 | 54        |
| 17 | Valorization of seasonal agri-food leftovers through insects. Science of the Total Environment, 2020, 709, 136209.                                                                                                             | 3.9 | 54        |
| 18 | Effect of rice husk ash (RHA) in the synthesis of (Pr,Zr)SiO4 ceramic pigment. Journal of the European<br>Ceramic Society, 2007, 27, 3483-3488.                                                                                | 2.8 | 52        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An Additional Structural and Electrical Study of Polymeric Haloplumbates(II) with Heterocyclic<br>Diprotonated Amines. Inorganic Chemistry, 2001, 40, 218-223.                                          | 1.9 | 51        |
| 20 | Preparation for reuse activity of waste electrical and electronic equipment: Environmental performance, cost externality and job creation. Journal of Cleaner Production, 2019, 222, 77-89.             | 4.6 | 50        |
| 21 | Microwave-Hydrothermal Synthesis and Hyperfine Characterization of Praseodymium-Doped Nanometric Zirconia Powders. Journal of the American Ceramic Society, 2005, 88, 633-638.                          | 1.9 | 42        |
| 22 | Recycling of EOL CRT glass into ceramic glaze formulations and its environmental impact by LCA approach. International Journal of Life Cycle Assessment, 2007, 12, 448-454.                             | 2.2 | 41        |
| 23 | Characterization of Rice Husk Ash and Its Recycling as Quartz Substitute for the Production of Ceramic Glazes. Journal of the American Ceramic Society, 2010, 93, 121-126.                              | 1.9 | 39        |
| 24 | The Anorthite-Diopside System: Structural and Devitrification Study. Part II: Crystallinity Analysis by the Rietveld-RIR Method. Journal of the American Ceramic Society, 2005, 88, 3131-3136.          | 1.9 | 38        |
| 25 | Recycling of Screen Glass Into New Traditional Ceramic Materials. International Journal of Applied<br>Ceramic Technology, 2010, 7, 909-917.                                                             | 1.1 | 36        |
| 26 | Structure, Sintering, and Crystallization Kinetics of Alkalineâ€Earth Aluminosilicate Glass–Ceramic<br>Sealants for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2010, 93, 830-837. | 1.9 | 36        |
| 27 | Nano-TiO2 Coatings for Limestone: Which Sustainability for Cultural Heritage?. Coatings, 2015, 5, 232-245.                                                                                              | 1.2 | 35        |
| 28 | Industry 4.0-based dynamic Social Organizational Life Cycle Assessment to target the social circular economy in manufacturing. Journal of Cleaner Production, 2021, 327, 129439.                        | 4.6 | 34        |
| 29 | Organic/inorganic composite materials: synthesis and properties of one-dimensional polymeric haloplumbate(II) systems. Inorganica Chimica Acta, 1997, 254, 137-143.                                     | 1.2 | 33        |
| 30 | <scp>CoAl<sub>2</sub>O<sub>4</sub></scp> Nano Pigment Obtained by Combustion Synthesis.<br>International Journal of Applied Ceramic Technology, 2012, 9, 968-978.                                       | 1.1 | 33        |
| 31 | Improving sustainable cultural heritage restoration work through life cycle assessment based model.<br>Journal of Cultural Heritage, 2018, 32, 221-231.                                                 | 1.5 | 33        |
| 32 | The effect of fired scrap addition on the sintering behaviour of hard porcelain. Ceramics<br>International, 2006, 32, 727-732.                                                                          | 2.3 | 32        |
| 33 | Human health characterization factors of nano-TiO2 for indoor and outdoor environments.<br>International Journal of Life Cycle Assessment, 2016, 21, 1452-1462.                                         | 2.2 | 32        |
| 34 | Feasibility of Using Cordierite Glass eramics as Tile Glazes. Journal of the American Ceramic Society,<br>1997, 80, 1757-1766.                                                                          | 1.9 | 31        |
| 35 | Role of Praseodymium on Zirconia Phases Stabilization. Chemistry of Materials, 2001, 13, 4550-4554.                                                                                                     | 3.2 | 30        |
| 36 | Life cycle assessment of a large, thin ceramic tile with advantageous technological properties.<br>International Journal of Life Cycle Assessment, 2014, 19, 1567-1580.                                 | 2.2 | 28        |

ANNA MARIA FERRARI

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A new glass–ceramic red pigment. Journal of the European Ceramic Society, 2004, 24, 3593-3601.                                                                                                                                                            | 2.8 | 27        |
| 38 | Effect of V2O5 addition on the crystallisation of glasses belonging to the CaO–ZrO2–SiO2 system.<br>Journal of Non-Crystalline Solids, 2003, 315, 77-88.                                                                                                  | 1.5 | 25        |
| 39 | Synthesis of Zirconia Nanoparticles in a Continuousâ€Flow Microwave Reactor. Journal of the<br>American Ceramic Society, 2008, 91, 3746-3748.                                                                                                             | 1.9 | 25        |
| 40 | Industry 4.0 and Smart Data as Enablers of the Circular Economy in Manufacturing: Product Re-Engineering with Circular Eco-Design. Sustainability, 2021, 13, 10366.                                                                                       | 1.6 | 24        |
| 41 | The life cycle approach as an innovative methodology for the recovery and restoration of cultural heritage. Journal of Cultural Heritage Management and Sustainable Development, 2014, 4, 133-148.                                                        | 0.5 | 23        |
| 42 | New Glass-Ceramic Inclusion Pigment. Journal of the American Ceramic Society, 2005, 88, 1070-1071.                                                                                                                                                        | 1.9 | 22        |
| 43 | Environmental and social impact assessment of cultural heritage restoration and its application to the Uncastillo Fortress. International Journal of Life Cycle Assessment, 2019, 24, 1297-1318.                                                          | 2.2 | 22        |
| 44 | Sustainability as source of competitive advantages in mature sectors. Smart and Sustainable Built<br>Environment, 2019, 8, 53-79.                                                                                                                         | 2.2 | 22        |
| 45 | Environmental and human health assessment of life cycle of nanoTiO2 functionalized porcelain stoneware tile. Science of the Total Environment, 2017, 577, 113-121.                                                                                        | 3.9 | 21        |
| 46 | Environmental life cycle assessment of the recycling processes of waste plastics recovered by landfill mining. Waste Management, 2020, 118, 68-78.                                                                                                        | 3.7 | 21        |
| 47 | Phytochemical compounds or their synthetic counterparts? A detailed comparison of the quantitative<br>environmental assessment for the synthesis and extraction of curcumin. Green Chemistry, 2016, 18,<br>1807-1818.                                     | 4.6 | 20        |
| 48 | Hyperfine Characterization of Pure and Doped Zircons. Journal of Solid State Chemistry, 2000, 150, 14-18.                                                                                                                                                 | 1.4 | 16        |
| 49 | Life Cycle Assessment of Chemical vs Enzymatic-Assisted Extraction of Proteins from Black Soldier Fly<br>Prepupae for the Preparation of Biomaterials for Potential Agricultural Use. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 14752-14764. | 3.2 | 16        |
| 50 | Life cycle assessment of an innovative cogeneration system based on the aluminum combustion with water. Renewable Energy, 2020, 154, 532-541.                                                                                                             | 4.3 | 16        |
| 51 | Reaction sintering and microstructural evolution in metakaolin-metastable alumina composites.<br>Journal of Thermal Analysis and Calorimetry, 2014, 117, 1035-1045.                                                                                       | 2.0 | 15        |
| 52 | Environmental sustainability assessment of a new degreasing formulation for the tanning cycle within leather manufacturing. Green Chemistry, 2017, 19, 4571-4582.                                                                                         | 4.6 | 13        |
| 53 | Environmental Scanning Electron Microscopy (ESEM) Investigation of the Reaction Mechanism in<br>Praseodymiumâ€Đoped Zircon. Journal of the American Ceramic Society, 2000, 83, 1518-1520.                                                                 | 1.9 | 12        |
| 54 | Environmental sustainability of orthopedic devices produced with powder bed fusion. Journal of<br>Industrial Ecology, 2020, 24, 681-694.                                                                                                                  | 2.8 | 10        |

Anna Maria Ferrari

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dimensionality reduced robust ordinal regression applied to life cycle assessment. Expert Systems<br>With Applications, 2021, 178, 115021.                                                                                      | 4.4 | 10        |
| 56 | Hyperfine Characterization of Metastable Tetragonal Configurations in Pr-Doped Zirconias. Chemistry of Materials, 2004, 16, 4319-4323.                                                                                          | 3.2 | 9         |
| 57 | The Liquidus Temperature of Nuclear Waste Glasses: An International Roundâ€Robin Study. International<br>Journal of Applied Glass Science, 2011, 2, 321-333.                                                                    | 1.0 | 9         |
| 58 | Life cycle assessment of wheat husk based agro-concrete block. Journal of Cleaner Production, 2022,<br>349, 131437.                                                                                                             | 4.6 | 9         |
| 59 | The Anorthite-Diopside System: Structural and Devitrification Study. Part I: Structural<br>Characterization by Molecular Dynamic Simulations. Journal of the American Ceramic Society, 2005,<br>88, 714-718.                    | 1.9 | 8         |
| 60 | Sintering and crystallization behavior of CaMgSi2O6–NaFeSi2O6 based glass-ceramics. Journal of Applied Physics, 2009, 106, .                                                                                                    | 1.1 | 7         |
| 61 | Management of Asbestos Containing Materials: A Detailed LCA Comparison of Different Scenarios<br>Comprising First Time Asbestos Characterization Factor Proposal. Environmental Science &<br>Technology, 2021, 55, 12672-12682. | 4.6 | 7         |
| 62 | Life cycle assessment of advertising folders. International Journal of Life Cycle Assessment, 2012, 17, 625-634.                                                                                                                | 2.2 | 6         |
| 63 | E-LCA of Two Microwave Absorbers Obtained from Slag of Copper Primary Production. Waste and Biomass Valorization, 2019, 10, 733-745.                                                                                            | 1.8 | 6         |
| 64 | Life cycle assessment of a ceramic glaze containing copper slags and its application on ceramic tile.<br>International Journal of Applied Ceramic Technology, 2020, 17, 42-54.                                                  | 1.1 | 5         |
| 65 | USING BLACK SOLDIER FLIES (HERMETIA ILLUCENS) TO BIOCONVERT WASTE FROM THE LIVESTOCK<br>PRODUCTION CHAIN: A LIFE CYCLE ASSESSMENT CASE STUDY. WIT Transactions on Ecology and the<br>Environment, 2018, , .                     | 0.0 | 5         |
| 66 | Social Organizational Life Cycle Assessment (SO-LCA) and Organization 4.0: An easy-to-implement method. MethodsX, 2022, 9, 101692.                                                                                              | 0.7 | 4         |
| 67 | Properties/Structure Relationships in Innovative PCL-SiO2 Nanocomposites. Macromolecular<br>Symposia, 2001, 169, 201-210.                                                                                                       | 0.4 | 3         |
| 68 | Opportune inward waste materials toward a zero waste ceramic slabs production in a circular economy perspective. International Journal of Applied Ceramic Technology, 2020, 17, 32-41.                                          | 1.1 | 3         |
| 69 | Industry 4.0 real-world testing of dynamic organizational life cycle assessment (O-LCA) of a ceramic tile manufacturer. Environmental Science and Pollution Research, 2023, 30, 124546-124565.                                  | 2.7 | 3         |
| 70 | Crystallization of some modified fluor-miserite Kx(Ca,Ce)5â^'xSi8O22F2 glasses. Materials Chemistry<br>and Physics, 2014, 147, 113-119.                                                                                         | 2.0 | 2         |
| 71 | Roomâ€Temperature Degradation of <i>t</i> â€Zr(Pr)O <sub>2</sub> in an Aqueous Suspension Revealed by<br>Perturbed Angular Correlations. Journal of the American Ceramic Society, 2008, 91, 2357-2359.                          | 1.9 | 0         |
| 72 | Environmental Safety of the 180-W GreenLight Laser: A Pilot Study On Plume And Irrigating Fluids.<br>Urology, 2021, 154, 227-232.                                                                                               | 0.5 | 0         |