
Man-Bo Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394224/publications.pdf Version: 2024-02-01

MAN-BO L

#	Article	IF	CITATIONS
1	Regioselective umpolung addition of dicyanobenzene to $\hat{1}\pm,\hat{1}^2$ -unsaturated alkenes enabled by electrochemical reduction. Organic Chemistry Frontiers, 2022, 9, 1261-1266.	4.5	7
2	Partial Phosphorization: A Strategy to Improve Some Performance(s) of Thiolated Metal Nanoclusters Without Notable Reduction of Stability. Chemistry - A European Journal, 2022, 28, .	3.3	10
3	Amino‣upported Palladium Catalyst for Chemo―and Stereoselective Domino Reactions. Angewandte Chemie, 2021, 133, 680-684.	2.0	3
4	Amino‣upported Palladium Catalyst for Chemo―and Stereoselective Domino Reactions. Angewandte Chemie - International Edition, 2021, 60, 670-674.	13.8	17
5	Efficient Heterogeneous Palladium Catalysts in Oxidative Cascade Reactions. Accounts of Chemical Research, 2021, 54, 2275-2286.	15.6	36
6	Aerobic Heterogeneous Palladium-Catalyzed Oxidative Allenic Câ^'H Arylation: Benzoquinone as a Direct Redox Mediator between O ₂ and Pd. CCS Chemistry, 2021, 3, 1127-1137.	7.8	6
7	An efficient nanocluster catalyst for Sonogashira reaction. Journal of Catalysis, 2021, 401, 206-213.	6.2	12
8	Tailoring silver nanoclusters <i>via</i> doping: advances and opportunities. Nanoscale Advances, 2021, 3, 2411-2422.	4.6	23
9	Efficient Heterogeneous Palladiumâ€Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 1992-1996.	13.8	24
10	Highly Diastereoselective Palladium-Catalyzed Oxidative Cascade Carbonylative Carbocyclization of Enallenols. Organic Letters, 2020, 22, 417-421.	4.6	8
11	Palladium-catalyzed oxidative dehydrogenative carbonylation reactions using carbon monoxide and mechanistic overviews. Chemical Society Reviews, 2020, 49, 341-353.	38.1	85
12	Efficient Heterogeneous Palladiumâ€Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie, 2020, 132, 2008-2012.	2.0	10
13	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie - International Edition, 2020, 59, 10391-10395.	13.8	25
14	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie, 2020, 132, 10477-10481.	2.0	10
15	Palladium-Catalyzed Stereospecific Oxidative Cascade Reaction of Allenes for the Construction of Pyrrole Rings: Control of Reactivity and Selectivity. ACS Catalysis, 2019, 9, 5184-5190.	11.2	31
16	Diastereoselective Cyclobutenol Synthesis: A Heterogeneous Palladium atalyzed Oxidative Carbocyclizationâ€Borylation of Enallenols. Chemistry - A European Journal, 2019, 25, 210-215.	3.3	26
17	Chemodivergent and Diastereoselective Synthesis of γ-Lactones and γ-Lactams: A Heterogeneous Palladium-Catalyzed Oxidative Tandem Process. Journal of the American Chemical Society, 2018, 140, 14604-14608.	13.7	64
18	Improving the Catalytic Activity of Au ₂₅ Nanocluster by Peeling and Doping. Chinese Journal of Chemistry, 2017, 35, 567-571.	4.9	57

Man-Bo Li

#	Article	IF	CITATIONS
19	The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nature Communications, 2017, 8, 14739.	12.8	151
20	The fcc structure isomerization in gold nanoclusters. Nanoscale, 2017, 9, 14809-14813.	5.6	62
21	Quantitatively Monitoring the Size-Focusing of Au Nanoclusters and Revealing What Promotes the Size Transformation from Au ₄₄ (TBBT) ₂₈ to Au ₃₆ (TBBT) ₂₄ . Analytical Chemistry, 2016, 88, 11297-11301.	6.5	48
22	Structure of Chiral Au ₄₄ (2,4-DMBT) ₂₆ Nanocluster with an 18-Electron Shell Closure. Journal of the American Chemical Society, 2016, 138, 10425-10428.	13.7	149
23	Peeling the Core–Shell Au ₂₅ Nanocluster by Reverse Ligand-Exchange. Chemistry of Materials, 2016, 28, 1022-1025.	6.7	60
24	Adding Two Active Silver Atoms on Au ₂₅ Nanoparticle. Nano Letters, 2015, 15, 1281-1287.	9.1	171
25	Cu ²⁺ induced formation of Au ₄₄ (SC ₂ H ₄ Ph) ₃₂ and its high catalytic activity for the reduction of 4-nitrophenol at low temperature. Chemical Communications, 2015, 51, 4433-4436.	4.1	66
26	Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nature Communications, 2015, 6, 8667.	12.8	258
27	Catalyzed formation of α,β-unsaturated ketones or aldehydes from propargylic acetates by a recoverable and recyclable nanocluster catalyst. Nanoscale, 2014, 6, 5714.	5.6	30
28	Direct Substitution of Primary Allylic Amines with Sulfinate Salts. Journal of the American Chemical Society, 2012, 134, 14694-14697.	13.7	170
29	Crossâ€Coupling of <i>N</i> â€Allylic Sulfonimides with Organozinc Reagents at Room Temperature. European Journal of Organic Chemistry, 2012, 2012, 4107-4109.	2.4	12
30	Selective Benzylic and Allylic Alkylation of Protic Nucleophiles with Sulfonamides through Double Lewis Acid Catalyzed Cleavage of sp ³ Carbon–Nitrogen Bonds. Chemistry - A European Journal, 2009, 15, 793-797.	3.3	93
31	Catalyst-Free Alkylation of Sulfinic Acids with Sulfonamides via sp ³ Câ^'N Bond Cleavage at Room Temperature. Organic Letters, 2009, 11, 2543-2545.	4.6	102
32	Gold nanocluster triggering near-infrared photocatalytic oxidations. Gold Bulletin, 0, , 1.	2.4	1