

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5394050/publications.pdf Version: 2024-02-01

Muli

#	Article	IF	CITATIONS
1	Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science, 2017, 8, 4917-4925.	7.4	239
2	Edible Filamentous Fungi from the Species <i>Monascus</i> : Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 555-567.	11.7	193
3	Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biology, 2016, 120, 297-305.	2.5	69
4	Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresource Technology, 2013, 148, 114-120.	9.6	62
5	Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability. Biotechnology Letters, 2015, 37, 403-407.	2.2	35
6	Engineering <i>Saccharomyces cerevisiae</i> Coculture Platform for the Production of Flavonoids. Journal of Agricultural and Food Chemistry, 2020, 68, 2146-2154.	5.2	31
7	Monasone Naphthoquinone Biosynthesis and Resistance in <i>Monascus</i> Fungi. MBio, 2020, 11, .	4.1	24
8	Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11. Microbial Cell Factories, 2020, 19, 224.	4.0	23
9	Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7. Extremophiles, 2016, 20, 451-459.	2.3	21
10	Cloning and characterization of a novel lipase from Stenotrophomonas maltophilia GS11: The first member of a new bacterial lipase family XVI. Journal of Biotechnology, 2016, 228, 30-36.	3.8	21
11	A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization. Extremophiles, 2016, 20, 157-165.	2.3	21
12	Systematic Metabolic Engineering for the Production of Azaphilones in <i>Monascus purpureus</i> HJ11. Journal of Agricultural and Food Chemistry, 2022, 70, 1589-1600.	5.2	14
13	<i>Aspergillus oryzae</i> Biosynthetic Platform for <i>de Novo</i> Iridoid Production. Journal of Agricultural and Food Chemistry, 2021, 69, 2501-2511.	5.2	12
14	Screening, purification, and characterization of a novel organic solvent-tolerant esterase, Lip2, from Monascus purpureus strain M7. Extremophiles, 2017, 21, 345-355.	2.3	9
15	MrGcn5 is required for the mycotoxin production, sexual and asexual development in Monascus ruber. Food Bioscience, 2021, 43, 101304.	4.4	9
16	Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades. RSC Advances, 2022, 12, 17873-17881.	3.6	7
17	Membrane lipid phosphorus reusing and antioxidant protecting played key roles in wild soybean resistance to phosphorus deficiency compared with cultivated soybean. Plant and Soil, 2022, 474, 99-113.	3.7	5
18	Identification of organic solvent-tolerant lipases from organic solvent-sensitive microorganisms. Journal of Molecular Catalysis B: Enzymatic, 2014, 99, 96-101.	1.8	4

Mu	Lı

#	Article	IF	CITATIONS
19	Conversion of a Monascus ruber esterase into a lipase by disrupting a salt bridge. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 178-185.	1.8	1