Xiang-Gao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/539403/publications.pdf Version: 2024-02-01

XIANC-GAOLL

#	Article	IF	CITATIONS
1	Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	21.0	320
2	Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials, 2020, 32, e1907757.	21.0	303
3	Fullâ€Color Tunable Circularly Polarized Luminescent Nanoassemblies of Achiral AlEgens in Confined Chiral Nanotubes. Advanced Materials, 2017, 29, 1606503.	21.0	252
4	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	16.0	232
5	Amplification of Circularly Polarized Luminescence through Triplet–Triplet Annihilation-Based Photon Upconversion. Journal of the American Chemical Society, 2017, 139, 9783-9786.	13.7	189
6	Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chemical Communications, 2014, 50, 6931.	4.1	163
7	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	19.5	161
8	Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. Journal of the American Chemical Society, 2021, 143, 3231-3237.	13.7	152
9	Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 15239-15242.	4.1	134
10	Novel hole transporting materials with a linear ï€-conjugated structure for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 5829.	4.1	132
11	Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1145-1152.	17.4	125
12	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	10.3	96
13	Suppressing defects through thiadiazole derivatives that modulate CH ₃ NH ₃ PbI ₃ crystal growth for highly stable perovskite solar cells under dark conditions. Journal of Materials Chemistry A, 2018, 6, 4971-4980.	10.3	95
14	Simple Way to Engineer Metal–Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5651-5656.	8.0	93
15	Advances in SnO ₂ -based perovskite solar cells: from preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9, 19554-19588.	10.3	88
16	A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16330-16334.	10.3	87
17	Dopantâ€Free Donor (D)–ï€â€"D–ï€â€"D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	6.8	83
18	Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dyes and Pigments, 2017, 136, 273-277.	3.7	83

#	Article	IF	CITATIONS
19	Enhanced stability and optoelectronic properties of MAPbI ₃ films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 10825-10834.	10.3	81
20	Carbon Nanotube Bridging Method for Hole Transport Layer-Free Paintable Carbon-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 916-923.	8.0	77
21	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	17.4	76
22	Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Letters, 2021, 6, 208-215.	17.4	67
23	Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8, 1116-1127.	10.4	65
24	Enhancing quantum yield of CsPb(BrxCl1-x)3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes. Nano Energy, 2020, 77, 105302.	16.0	55
25	Highly Efficient pâ€iâ€n Perovskite Solar Cells Utilizing Novel Lowâ€Temperature Solutionâ€Processed Hole Transport Materials with Linear Ï€â€Conjugated Structure. Small, 2016, 12, 4902-4908.	10.0	53
26	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	5.6	47
27	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	5.5	40
28	Solution-processed thermally stable amorphous films of small molecular hole injection/transport bi-functional materials and their application in high efficiency OLEDs. Journal of Materials Chemistry C, 2015, 3, 11377-11384.	5.5	39
29	Recent Progress of Perovskite Solar Cells. Current Nanoscience, 2016, 12, 137-156.	1.2	39
30	Novel carbazolyl-substituted spiro[acridine-9,9′-fluorene] derivatives as deep-blue emitting materials for OLED applications. Dyes and Pigments, 2018, 154, 30-37.	3.7	37
31	Highly solvatochromic fluorescence of anthraquinone dyes based on triphenylamines. Dyes and Pigments, 2017, 144, 262-270.	3.7	36
32	Preparation of Mono-Dispersed Polyurea-Urea Formaldehyde Double Layered Microcapsules. Polymer Bulletin, 2008, 60, 725-731.	3.3	35
33	A thin pristine non-triarylamine hole-transporting material layer for efficient CH ₃ NH ₃ PbI ₃ perovskite solar cells. RSC Advances, 2014, 4, 32918.	3.6	35
34	Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Organic Electronics, 2018, 53, 249-255.	2.6	35
35	Position effect of arylamine branches on pyrene-based dopant-free hole transport materials for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2020, 387, 123965.	12.7	34
36	A bipolar emitting material for high efficient non-doped fluorescent organic light-emitting diode approaching standard deep blue. Dyes and Pigments, 2016, 129, 34-42.	3.7	33

#	Article	IF	CITATIONS
37	Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D hybrid dimension structure for efficient and stable solar cells. Chemical Engineering Journal, 2021, 403, 125724.	12.7	33
38	Beyond efficiency fever: Preventing lead leakage for perovskite solar cells. Matter, 2022, 5, 1137-1161.	10.0	32
39	Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material. Synthetic Metals, 2016, 215, 56-63.	3.9	31
40	Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Holeâ€Transport Materials. Energy Technology, 2017, 5, 312-320.	3.8	31
41	A Novel Spiro[acridineâ€9,9′â€fluorene] Derivatives Containing Phenanthroimidazole Moiety for Deepâ€Blue OLED Application. Chemistry - an Asian Journal, 2017, 12, 3069-3076.	3.3	30
42	Carbazole-diphenylimidazole based bipolar material and its application in blue, green and red single layer OLEDs by solution processing. Dyes and Pigments, 2017, 142, 175-182.	3.7	29
43	Organic Single-Crystalline p–n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 42715-42722.	8.0	29
44	A novel bipolar carbazole/ phenanthroimidazole derivative for high efficiency nondoped deep-blue organic light-emitting diodes. Organic Electronics, 2019, 64, 259-265.	2.6	29
45	In Situ Synthesized 2D Covalent Organic Framework Nanosheets Induce Growth of Highâ€Quality Perovskite Film for Efficient and Stable Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	29
46	Impact of 9â€(4â€methoxyphenyl) Carbazole and Benzodithiophene Cores on Performance and Stability for Perovskite Solar Cells Based on Dopantâ€Free Holeâ€Transporting Materials. Solar Rrl, 2019, 3, 1900202.	5.8	28
47	A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on Y-type titanylphthalocyanine nanoparticles. Journal of Materials Chemistry C, 2016, 4, 5584-5592.	5.5	27
48	Chemically doped hole transporting materials with low cross-linking temperature and high mobility for solution-processed green/red PHOLEDs. Chemical Engineering Journal, 2020, 391, 123479.	12.7	27
49	Novel Synthesis and Characterization of Yellow Inorganic/Organic Composite Spheres for Electrophoretic Display. Industrial & Engineering Chemistry Research, 2009, 48, 1468-1475.	3.7	26
50	Fast-response and monodisperse silica nanoparticles modified with ionic liquid towards electrophoretic displays. Dyes and Pigments, 2018, 148, 270-275.	3.7	26
51	Transformation of Quasiâ€2D Perovskite into 3D Perovskite Using Formamidine Acetate Additive for Efficient Blue Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2105164.	14.9	26
52	Efficient, Stable, Dopantâ€Free Holeâ€Transport Material with a Triphenylamine Core for CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Energy Technology, 2017, 5, 1173-1178.	3.8	25
53	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.	10.3	25
54	Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs. Applied Physics Letters, 2019, 114, .	3.3	25

#	Article	IF	CITATIONS
55	Electrochromic properties of novel chalcones containing triphenylamine moiety. Dyes and Pigments, 2014, 106, 154-160.	3.7	24
56	Highly efficient hole injection/transport layer-free OLEDs based on self-assembled monolayer modified ITO by solution-process. Nano Energy, 2020, 78, 105399.	16.0	24
57	Self-assembled monolayer-modified ITO for efficient organic light-emitting diodes: The impact of different self-assemble monolayers on interfacial and electroluminescent properties. Organic Electronics, 2018, 56, 89-95.	2.6	23
58	Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes and Pigments, 2016, 131, 41-48.	3.7	22
59	Improvement in photovoltaic performance of perovskite solar cells by interface modification and co-sensitization with novel asymmetry 7-coumarinoxy-4-methyltetrasubstituted metallophthalocyanines. Synthetic Metals, 2016, 220, 187-193.	3.9	21
60	A thermally cross-linked hole-transporting film with the remarkable solvent resistance for solution-processed OLEDs. Organic Electronics, 2018, 57, 345-351.	2.6	21
61	Efficient and Stable Large Bandgap MAPbBr ₃ Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.	17.4	21
62	2,9,16,23-Tetrakis(7-coumarinoxy-4-methyl)- metallophthalocyanines -based hole transporting material for mixed-perovskite solar cells. Synthetic Metals, 2017, 226, 1-6.	3.9	20
63	Identifying high-performance and durable methylammonium-free lead halide perovskites <i>via</i> high-throughput synthesis and characterization. Energy and Environmental Science, 2021, 14, 6638-6654.	30.8	20
64	Dopantâ€Free Holeâ€Transport Material with a Tetraphenylethene Core for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1257-1264.	3.8	19
65	The preparation of high photosensitive TiOPc. Dyes and Pigments, 2007, 72, 38-41.	3.7	18
66	Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2016, 25, 702-708.	12.9	18
67	Organic Single rystalline Donor–Acceptor Heterojunctions with Ambipolar Bandâ€Like Charge Transport for Photovoltaics. Advanced Materials Interfaces, 2018, 5, 1800336.	3.7	18
68	Zn ²⁺ -Doped Lead-Free CsMnCl ₃ Nanocrystals Enable Efficient Red Emission with a High Photoluminescence Quantum Yield. Journal of Physical Chemistry Letters, 2022, 13, 4688-4694.	4.6	18
69	Preparation of high efficiency hollow TiO2 nanospheres for electrophoretic displays. Materials Letters, 2012, 74, 1-4.	2.6	17
70	Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS Applied Materials & Interfaces, 2020, 12, 20750-20756.	8.0	17
71	Study on synthesis and properties of novel luminescent hole transporting materials based on N,N′-di(p-tolyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine core. Dyes and Pigments, 2013, 97, 92-99.	3.7	16
72	Achieving highly efficient blue light-emitting polymers by incorporating a styrylarylene amine unit. Journal of Materials Chemistry C, 2018, 6, 12355-12363.	5.5	16

#	Article	IF	CITATIONS
73	Achieving non-doped deep-blue OLEDs by applying bipolar imidazole derivatives. Organic Electronics, 2019, 69, 289-296.	2.6	16
74	Inkjet-printed alloy-like cross-linked hole-transport layer for high-performance solution-processed green phosphorescent OLEDs. Journal of Materials Chemistry C, 2021, 9, 12712-12719.	5.5	16
75	Novel photochromic and electrochromic diarylethenes bearing triphenylamine units. RSC Advances, 2014, 4, 16839-16848.	3.6	15
76	Impact of peripheral groups on pyrimidine acceptor-based HLCT materials for efficient deep blue OLED devices. Journal of Materials Chemistry C, 2022, 10, 9953-9960.	5.5	15
77	Preparation and properties of red inorganic hollow nanospheres for electrophoretic display. Applied Surface Science, 2014, 317, 319-324.	6.1	14
78	A Novel <i>trans</i> â€lâ€(9â€Anthryl)â€2â€phenylethene Derivative Containing a Phenanthroimidazole Unit for Application in Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2018, 13, 81-88.	3.3	14
79	Controllable self-assembly of BiOI/oxidized mesocarbon microbeads core-shell composites: A novel hierarchical structure facilitated photocatalytic activities. Chemical Engineering Science, 2020, 221, 115653.	3.8	14
80	Electronic Coordination Effect of the Regulator on Perovskite Crystal Growth and Its High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19439-19446.	8.0	14
81	Effect of concomitant anti-solvent engineering on perovskite grain growth and its high efficiency solar cells. Science China Materials, 2021, 64, 267-276.	6.3	14
82	Bacitracin-Controlled BiOI/Bi ₅ O ₇ I Nanosheet Assembly and S-Scheme Heterojunction Formation for Enhanced Photocatalytic Performances. ACS Applied Nano Materials, 2022, 5, 6736-6749.	5.0	14
83	Film-forming hole transporting materials for high brightness flexible organic light-emitting diodes. Dyes and Pigments, 2016, 125, 36-43.	3.7	13
84	Polymer additive assisted crystallization of perovskite films for high-performance solar cells. Organic Electronics, 2021, 96, 106258.	2.6	13
85	Design of high-performance chlorine type dyes for dye-sensitized solar cells. International Journal of Quantum Chemistry, 2014, 114, 222-232.	2.0	12
86	The modulation of opto-electronic properties of CH3NH3PbBr3 crystal. Journal of Materials Science: Materials in Electronics, 2017, 28, 11053-11058.	2.2	12
87	Synthesis and characterization of simple trans-AB-porphyrins for dye-sensitized solar cells. New Journal of Chemistry, 2013, 37, 1134.	2.8	11
88	Nano titanium dioxide particles modified with poly(lauryl methacrylate) and its electrorheological and electrophoretic behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 250-255.	4.7	11
89	Two trans-1-(9-anthryl)-2-phenylethene derivatives as blue-green emitting materials for highly bright organic light-emitting diodes application. Organic Electronics, 2017, 50, 228-238.	2.6	11
90	Regulation of peripheral tert-butyl position: Approaching efficient blue OLEDs based on solution-processable hole-transporting materials. Organic Electronics, 2019, 71, 85-92.	2.6	11

#	Article	IF	CITATIONS
91	Hole transport layer-free deep-blue OLEDs with outstanding colour purity and high efficiency. Journal of Materials Chemistry C, 2020, 8, 9184-9188.	5.5	11
92	Tunable White Light-Emitting Devices Based on Unilaminar High-Efficiency Zn ²⁺ -Doped Blue CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry Letters, 2021, 12, 8507-8512.	4.6	11
93	Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: Role of the heteroatom on the photovoltaic performance of perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133371.	12.7	11
94	Alcoholâ€Soluble Electronâ€Transport Materials for Fully Solutionâ€Processed Green PhOLEDs. Chemistry - an Asian Journal, 2018, 13, 1335-1341.	3.3	10
95	The core-shell mesoporous titanium dioxide with in-situ nitrogen doped carbon as the anode for high performance lithium-ion battery. Journal of Alloys and Compounds, 2019, 806, 946-952.	5.5	10
96	A low-cost thiophene-based hole transport material for efficient and stable perovskite solar cells. Organic Electronics, 2019, 71, 194-198.	2.6	10
97	Thermally induced crystallization behavior and film microstructure alteration of N,N,N′,N′-tetraphenylbenzidine (TPB) and N,N,N′,N′-tetra-p-tolyl-benzidine (TTB). Organic Electronics, 15, 1876-1883.	2 0.1 :4,	9
98	Charging behavior of carbon black in a low-permittivity medium based on acid–base charging theory. Journal of Materials Chemistry C, 2015, 3, 3980-3988.	5.5	9
99	Ultra-photosensitive Y-type titanylphthalocyanine nanocrystals: Preparation and photoelectric properties. Dyes and Pigments, 2016, 125, 44-53.	3.7	9
100	Hole-transporting material based on spirobifluorene unit with perfect amorphous and high stability for efficient OLEDs. Journal of Materials Science: Materials in Electronics, 2019, 30, 11440-11450.	2.2	8
101	Blue nanocomposites coated with an ionic liquid polymer for electrophoretic displays. RSC Advances, 2021, 11, 20760-20768.	3.6	8
102	Enhancing hole injection by processing ITO through MoO3 and self-assembled monolayer hybrid modification for solution-processed hole transport layer-free OLEDs. Chemical Engineering Journal, 2022, 427, 131356.	12.7	8
103	Synthesis of nanosized Y-type TiOPc by a high gravity method. Journal of Materials Science, 2005, 40, 4373-4374.	3.7	7
104	Preparation and characterization core-shell particles and application for E-Ink. Journal of Applied Polymer Science, 2007, 104, 1195-1199.	2.6	7
105	Preparation of titanium dioxide nano-particles modified with poly (methyl methacrylate) and its electrorheological characteristics in Isopar L. Colloid and Polymer Science, 2015, 293, 473-479.	2.1	7
106	Studies on the charging behaviors of copper chromite black in nonpolar media with nonionic surfactants for electrophoretic displays. Journal of Materials Chemistry C, 2016, 4, 323-330.	5.5	7
107	Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral. Nanophotonics, 2019, 8, 787-797.	6.0	7
108	Boosting the Stability of Perovskite Solar Cells through a Dopantâ€Free Tetraphenylbenzidineâ€Based Hole Transporting Material. ChemistrySelect, 2018, 3, 13032-13037.	1.5	6

#	Article	IF	CITATIONS
109	Low-temperature cross-linkable hole transporting materials through chemical doping for solution-processed green PHOLEDs. Organic Electronics, 2021, 99, 106334.	2.6	6
110	Synthesis, Spectral Properties of Zinc Hexadecafluorophthalocyanine (ZnPcF ₁₆) and Its Application in Organic Thin Film Transistors. Materials Transactions, 2017, 58, 103-106.	1.2	5
111	Synthesis of novel s-triazine/carbazole based bipolar molecules and their application in phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2015, 26, 6563-6571.	2.2	4
112	Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure. Journal of Materials Science: Materials in Electronics, 2016, 27, 2022-2030.	2.2	4
113	Solution-processed phosphorus-tungsten oxide film as hole injection layer for application in efficient organic light-emitting diode. Materials Science in Semiconductor Processing, 2018, 85, 106-112.	4.0	4
114	Novel electron transporting materials for highly efficient fully solution-processed green PhOLEDs with low rolls-off and drive voltage. Dyes and Pigments, 2018, 158, 20-27.	3.7	4
115	In situ construction of Bi5O7I/Bi4Ti3O12 heterostructure composites with plentiful phase interfaces for the boosted selective oxidation of benzylic alcohols under visible light. Journal of Materials Chemistry C, 0, , .	5.5	4
116	Low-temperature processed cross-linkable hole transport layer for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131872.	12.7	4
117	Preparation of TiO ₂ Nano-particles with Controllable Surface Charges for Electrophoretic Display. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 649-654.	1.3	4
118	Influence of the number of phenylethynyl units present in porphyrin sensitizer on its light harvesting and cell performance. Research on Chemical Intermediates, 2015, 41, 8713-8724.	2.7	3
119	Enhanced efficiency and stability of organic light-emitting diodes via binary self-assembled monolayers of aromatic and aliphatic compounds on indium tin oxide. Organic Electronics, 2020, 84, 105752.	2.6	3
120	Preparation and characterization of TiO2/SiO2-cationic hybrid nanoparticles for electrophoretic displays. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	2
121	Preparation of titanium dioxide nanoparticles modified with methacrylate and their electrophoretic properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 5263-5269.	2.2	2
122	Catalytic reduction of 1,4â€benzoquinone to hydroquinone via [FeFe]â€hydrogenase model complexes under mild conditions. Journal of Chemical Technology and Biotechnology, 2020, 95, 1250-1257.	3.2	2
123	Blue emissive dimethylmethylene-bridged triphenylamine derivatives appending cross-linkable groups. Organic and Biomolecular Chemistry, 2020, 18, 3754-3760.	2.8	2
124	Synthesis and photoconductivities of bisazo charge generation materials. Frontiers of Chemical Engineering in China, 2008, 2, 330-334.	0.6	1
125	Butterflyâ€like Tetraazaacenequinodimethane Derivatives: Synthesis, Structure and Halochromic Properties. Chemistry - an Asian Journal, 2020, 15, 2198-2202.	3.3	1
126	Controllable and efficient hole-injection layers with molybdenum oxide units by solution-processed procedure for OLEDs. Organic Electronics, 2020, 85, 105868.	2.6	1

#	Article	IF	CITATIONS
127	Preparation and Characterization of Coloured Polymer Particles for Electronic Ink. Polymers and Polymer Composites, 2017, 25, 161-166.	1.9	0
128	Triazine-based OLEDs with simplified structure and high efficiency by solution-processed procedure. Journal of Materials Science: Materials in Electronics, 2020, 31, 19943-19949.	2.2	0