Gareth J Inman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melanoma secretion of transforming growth factorâ€î²2 leads to loss of epidermal AMBRA1 threatening epidermal integrity and facilitating tumour ulceration*. British Journal of Dermatology, 2022, 186, 694-704.	1.5	8
2	Heterogeneous addiction to transforming growth factorâ€beta signalling in recessive dystrophic epidermolysis bullosaâ€associated cutaneous squamous cell carcinoma*. British Journal of Dermatology, 2021, 184, 697-708.	1.5	12
3	TGFÎ ² signaling networks in ovarian cancer progression and plasticity. Clinical and Experimental Metastasis, 2021, 38, 139-161.	3.3	31
4	Oncogenic BRAF, unrestrained by TGFÎ ² -receptor signalling, drives right-sided colonic tumorigenesis. Nature Communications, 2021, 12, 3464.	12.8	33
5	The Genomic Landscape of Actinic Keratosis. Journal of Investigative Dermatology, 2021, 141, 1664-1674.e7.	0.7	34
6	Clinicopathological Determinants of Recurrence Risk and Survival in Mucinous Ovarian Carcinoma. Cancers, 2021, 13, 5839.	3.7	8
7	RIPK1â€mediated immunogenic cell death promotes antiâ€tumour immunity against softâ€tissue sarcoma. EMBO Molecular Medicine, 2020, 12, e10979.	6.9	22
8	Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cellular Signalling, 2020, 72, 109638.	3.6	23
9	A Unique Panel of Patient-Derived Cutaneous Squamous Cell Carcinoma Cell Lines Provides a Preclinical Pathway for Therapeutic Testing. International Journal of Molecular Sciences, 2019, 20, 3428.	4.1	14
10	Azathioprine: friend or foe?. British Journal of Dermatology, 2019, 180, 961-963.	1.5	5
11	Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor <i>β</i> Superfamily Type 1 Receptors. Molecular Pharmacology, 2019, 95, 222-234.	2.3	20
12	The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nature Communications, 2018, 9, 3667.	12.8	208
13	The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions. Frontiers in Microbiology, 2018, 9, 1806.	3.5	24
14	Reduced SMAD2/3 activation independently predicts increased depth of human cutaneous squamous cell carcinoma. Oncotarget, 2018, 9, 14552-14566.	1.8	9
15	TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nature Communications, 2017, 8, 14079.	12.8	162
16	TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death and Differentiation, 2017, 24, 1681-1693.	11.2	48
17	Loss of TGF-β signaling drives cSCC from skin stem cells – More evidence. Cell Cycle, 2017, 16, 386-387.	2.6	6
18	Targeting BRAF-mutant tumours with TGFBR1 inhibitors. Aging, 2017, 9, 5-6.	3.1	0

Gareth J Inman

#	Article	IF	CITATIONS
19	The Promise of Genomics and the Development of Targeted Therapies for Cutaneous Squamous Cell Carcinoma. Acta Dermato-Venereologica, 2016, 96, 3-16.	1.3	46
20	Fatal attractions? Correlations of CXCL12-CXCR4-CXCR7 expression with disease progression in melanoma and Kaposi sarcoma. British Journal of Dermatology, 2016, 175, 1140-1141.	1.5	0
21	Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81
22	Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells. Oncotarget, 2016, 7, 81995-82012.	1.8	18
23	Exosome-mediated transfer from the tumor microenvironment increases TGFÎ ² signaling in squamous cell carcinoma. American Journal of Translational Research (discontinued), 2016, 8, 2432-7.	0.0	49
24	Developments in Burkitt's lymphoma: novel cooperations in oncogenic MYC signaling. Cancer Management and Research, 2014, 6, 27.	1.9	16
25	E3 Ubiquitin Ligase HOIP Attenuates Apoptotic Cell Death Induced by Cisplatin. Cancer Research, 2014, 74, 2246-2257.	0.9	61
26	Exogenous heparin binds and inhibits bone morphogenetic protein 6 biological activity. International Orthopaedics, 2013, 37, 529-541.	1.9	26
27	Transforming Growth Factor-Î ² Directly Induces p53-up-regulated Modulator of Apoptosis (PUMA) during the Rapid Induction of Apoptosis in Myc-driven B-cell Lymphomas. Journal of Biological Chemistry, 2013, 288, 5198-5209.	3.4	31
28	Crosstalk between p53 and TGF- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="bold">β Signalling. Journal of Signal Transduction, 2012, 2012, 1-10.</mml:mi </mml:math 	2.0	92
29	Switching TGFÎ ² from a tumor suppressor to a tumor promoter. Current Opinion in Genetics and Development, 2011, 21, 93-99.	3.3	182
30	A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biology, 2009, 10, 20.	3.0	124
31	SB-431542 Is a Potent and Specific Inhibitor of Transforming Growth Factor-β Superfamily Type I Activin Receptor-Like Kinase (ALK) Receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 2002, 62, 65-74.	2.3	1,488
32	Nucleocytoplasmic Shuttling of Smads 2, 3, and 4 Permits Sensing of TGF-Î ² Receptor Activity. Molecular Cell, 2002, 10, 283-294.	9.7	361
33	Apoptosis Induced by TGF-β1 in Burkitt's Lymphoma Cells Is Caspase 8 Dependent But Is Death Receptor Independent. Journal of Immunology, 2000, 165, 2500-2510.	0.8	83