Chandan Devireddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393581/publications.pdf

Version: 2024-02-01

26 1,967 papers citations

citations

14 h-index 27 g-index

27 all docs 27 docs citations

27 times ranked 2666 citing authors

#	Article	IF	CITATIONS
1	Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet, The, 2016, 387, 2218-2225.	13.7	899
2	Comparison of Transfemoral Transcatheter AorticÂValve Replacement Performed inÂthe Catheterization Laboratory (Minimalist Approach) Versus Hybrid Operating Room (Standard Approach). JACC: Cardiovascular Interventions, 2014, 7, 898-904.	2.9	290
3	Meta-Analysis of Randomized Clinical Trials Comparing Biodegradable Polymer Drug-Eluting Stent to Second-Generation Durable Polymer Drug-Eluting Stents. JACC: Cardiovascular Interventions, 2017, 10, 462-473.	2.9	138
4	Early clinical and angiographic outcomes after robotic-assisted coronary artery bypass surgery. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 179-185.	0.8	83
5	Impact of Preoperative Chronic Kidney Disease in 2,531 High-Risk and Inoperable Patients Undergoing Transcatheter Aortic Valve Replacement in the PARTNER Trial. Annals of Thoracic Surgery, 2016, 102, 1172-1180.	1.3	75
6	High-Risk Patients With Inoperative Aortic Stenosis: Use of Transapical, Transaortic, and Transcarotid Techniques. Annals of Thoracic Surgery, 2015, 99, 817-825.	1.3	65
7	Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic ValveÂReplacement. JACC: Cardiovascular Interventions, 2018, 11, 107-115.	2.9	58
8	Clinical and Angiographic Results After Hybrid Coronary Revascularization. Annals of Thoracic Surgery, 2014, 97, 484-490.	1.3	51
9	Use of Transaortic, Transapical, and Transcarotid Transcatheter Aortic Valve Replacement in Inoperable Patients. Annals of Thoracic Surgery, 2013, 96, 1349-1357.	1.3	49
10	Transcatheter Aortic Valve Replacement in Patients With Aortic Stenosis and Mitral Regurgitation. Annals of Thoracic Surgery, 2017, 104, 1977-1985.	1.3	45
11	Neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) can risk stratify patients in transcatheter aortic-valve replacement (TAVR). International Journal of Cardiology, 2016, 223, 444-449.	1.7	38
12	Assessment of Commonly Used Frailty Markers for High- and Extreme-Risk Patients Undergoing Transcatheter Aortic Valve Replacement. Annals of Thoracic Surgery, 2017, 104, 1939-1946.	1.3	30
13	Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation. Journal of Interventional Cardiology, 2016, 29, 594-600.	1.2	20
14	Anatomical risk models for paravalvular leak and landing zone complications for balloonâ€expandable transcatheter aortic valve replacement. Catheterization and Cardiovascular Interventions, 2017, 90, 690-700.	1.7	18
15	Adverse clinical outcomes in patients undergoing both <scp>PCI</scp> and <scp>TAVR</scp> : Analysis from a pooled <scp>multiâ€eenter</scp> registry. Catheterization and Cardiovascular Interventions, 2021, 97, 529-539.	1.7	16
16	Endâ€stage renal disease and severe aortic stenosis: Does valve replacement improve oneâ€year outcomes?. Catheterization and Cardiovascular Interventions, 2017, 89, 1109-1115.	1.7	14
17	Nurse Led Sedation: The Clinical and Echocardiographic Outcomes of the 5-Year Emory Experience. Structural Heart, 2020, 4, 302-309.	0.6	14
18	Feasibility and Safety of Low-Dose Intra-Coronary Tenecteplase During Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction (ICE T-TIMI 49). American Journal of Cardiology, 2020, 125, 485-490.	1.6	12

#	Article	IF	CITATIONS
19	Lessons Learned from Robotic-Assisted Coronary Artery Bypass Surgery: Risk Factors for Conversion to Median Sternotomy. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2012, 7, 323-327.	0.9	11
20	A single healthcare experience with Impella RP. Catheterization and Cardiovascular Interventions, 2021, 97, E161-E167.	1.7	10
21	The impact of clopidogrel therapy on postoperative bleeding after robotic-assisted coronary artery bypass surgery. European Journal of Cardio-thoracic Surgery, 2014, 46, e8-e13.	1.4	7
22	Does a Higher Society of Thoracic Surgeons Score Predict Outcomes in Transfemoral and Alternative Access Transcatheter Aortic Valve Replacement?. Annals of Thoracic Surgery, 2016, 102, 474-482.	1.3	6
23	Acute Kidney Injury After Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2018, 11, e007135.	3.9	6
24	Physiologic Functional Evaluation of Left Internal Mammary Artery Graft to Left Anterior Descending Coronary Artery Steal due to Unligated First Thoracic Branch in a Case of Refractory Angina. Case Reports in Cardiology, 2016, 2016, 1-4.	0.2	4
25	Outcomes Following Shock Aortic Valve Replacement: Transcatheter Versus Surgical Approaches. Cardiovascular Revascularization Medicine, 2020, 21, 1313-1318.	0.8	4
26	The Accuracy of Transit Time Flow Measurement in Predicting Graft Patency after Coronary Artery Bypass Grafting. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2013, 8, 416-419.	0.9	2