

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulating On/Off Single-Molecule Magnet Behavior in a Dy(III)-Based Photochromic Complex. Journal of the American Chemical Society, 2020, 142, 2682-2689.	6.6	301
2	A multi-metal-cluster MOF with Cu4l4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chemical Science, 2013, 4, 1484.	3.7	202
3	Photochromism and photomagnetism in crystalline hybrid materials actuated by nonphotochromic units. Chemical Communications, 2019, 55, 5631-5634.	2.2	160
4	An organic–inorganic hybrid zinc phosphite framework with room temperature phosphorescence. Chemical Communications, 2018, 54, 3712-3714.	2.2	123
5	Mixed-Ligand Strategy for the Construction of Photochromic Metal–Organic Frameworks Driven by Electron-Transfer Between Nonphotoactive Units. Crystal Growth and Design, 2020, 20, 7350-7355.	1.4	103
6	An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba ²⁺ ions and with remarkable selectivities for CO ₂ –N ₂ and CO ₂ –CH ₄ . Journal of Materials Chemistry A, 2015, 3, 13526-13532.	5.2	91
7	Using cuprophilicity as a multi-responsive chromophore switching color in response to temperature, mechanical force and solvent vapors. Journal of Materials Chemistry C, 2013, 1, 4339.	2.7	83
8	An inorganic–organic hybrid framework from the assembly of an electron-rich diphosphonate and electron-deficient tripyridyl moiety. Journal of Materials Chemistry C, 2018, 6, 9341-9344.	2.7	69
9	Europium and Terbium Coordination Polymers Assembled from Hexacarboxylate Ligands: Structures and Luminescent Properties. Crystal Growth and Design, 2014, 14, 1010-1017.	1.4	65
10	Luminescent Thermochromism and White-Light Emission of a 3D [Ag ₄ Br ₆] Cluster-Based Coordination Framework with Both Adamantane-like Node and Linker. Inorganic Chemistry, 2021, 60, 4375-4379.	1.9	65
11	Quadruple Photoresponsive Functionality in a Crystalline Hybrid Material: Photochromism, Photomodulated Fluorescence, Magnetism and Nonlinear Optical Properties. Chemistry - A European Journal, 2021, 27, 7842-7846.	1.7	63
12	Template synthesis and photochromism of a layered zinc diphosphonate. CrystEngComm, 2017, 19, 1160-1164.	1.3	62
13	Solvated Lanthanide Cationic Template Strategy for Constructing Iodoargentates with Photoluminescence and White Light Emission. Crystal Growth and Design, 2018, 18, 7041-7047.	1.4	56
14	Construction of lodoargentates with Diverse Architectures: Template Syntheses, Structures, and Photocatalytic Properties. Crystal Growth and Design, 2020, 20, 1130-1138.	1.4	52
15	Constructing Crystalline Heterometallic Indium–Organic Frameworks by the Bifunctional Method. Crystal Growth and Design, 2015, 15, 1440-1445.	1.4	50
16	3D Inorganic Cuprous Iodide Open-Framework Templated by In Situ <i>N</i> -Methylated 2,4,6-Tri(4-pyridyl)-1,3,5-triazine. Crystal Growth and Design, 2017, 17, 3588-3591.	1.4	45
17	The Tri(imidazole)â€Derivative Moiety: A New Category of Electron Acceptors for the Design of Crystalline Hybrid Photochromic Materials. Chemistry - A European Journal, 2021, 27, 1410-1415.	1.7	45
18	Light enhanced proton conductivity in a terbium phosphonate photochromic chain complex. Science China Chemistry, 2021, 64, 1170-1176.	4.2	44

#	Article	IF	CITATIONS
19	Structural variability, unusual thermochromic luminescence and nitrobenzene sensing properties of five Zn(<scp>ii</scp>) coordination polymers assembled from a terphenyl-hexacarboxylate ligand. CrystEngComm, 2015, 17, 3829-3837.	1.3	43
20	A Series of d ¹⁰ Metal Clusters Constructed by 2,6-Bis[3-(pyrazin-2-yl)-1,2,4-triazolyl]pyridine: Crystal Structures and Unusual Luminescences. Crystal Growth and Design, 2014, 14, 5011-5018.	1.4	36
21	Inorganic–organic hybrid zinc phosphites with fluorescence/phosphorescence dual emission performances. Journal of Materials Chemistry C, 2018, 6, 10411-10414.	2.7	36
22	Sorption behaviour in a unique 3,12-connected zinc–organic framework with 2.4 nm cages. Journal of Materials Chemistry A, 2013, 1, 10631.	5.2	34
23	Structural Diversity Modulated by the Ratios of a Ternary Solvent Mixture: Syntheses, Structures, and Luminescent Properties of Five Zinc(II) Metal–Organic Frameworks. Crystal Growth and Design, 2015, 15, 1481-1491.	1.4	34
24	Dual Ligand Strategy for Constructing a Series of d ¹⁰ Coordination Polymers: Syntheses, Structures, Photoluminescence, and Sensing Properties. Crystal Growth and Design, 2018, 18, 1882-1890.	1.4	33
25	An excellent cryogenic magnetic cooler: magnetic and magnetocaloric study of an inorganic frame material. Materials Chemistry Frontiers, 2018, 2, 2327-2332.	3.2	30
26	Two hybrid transition metal triphosphonates decorated with a tripodal imidazole ligand: synthesis, structures and properties. Dalton Transactions, 2017, 46, 808-813.	1.6	29
27	In Situ Ligand Modification Strategy for the Construction of One-, Two-, and Three-Dimensional Heterometallic Iodides. Inorganic Chemistry, 2017, 56, 13785-13793.	1.9	29
28	A pillared-layer strategy to construct water-stable Zn–organic frameworks for iodine capture and luminescence sensing of Fe ³⁺ . Dalton Transactions, 2019, 48, 602-608.	1.6	29
29	A Zn(II)-Based Coordination Polymer Featuring Selective Detection of Fe ³⁺ and Efficient Capture of Anionic Dyes. Crystal Growth and Design, 2020, 20, 7477-7483.	1.4	29
30	A Cu ₂ 1 ₂ -Based Coordination Framework as the Selective Sensor for Ag ⁺ and the Effective Adsorbent for I ₂ . Crystal Growth and Design, 2022, 22, 3719-3726.	1.4	29
31	The 3D porous metal–organic frameworks based on bis(pyrazinyl)–trizole: structures, photoluminescence and gas adsorption properties. CrystEngComm, 2013, 15, 5673.	1.3	26
32	Room-Temperature Phosphorescence with Excitation-Energy Dependence and External Heavy-Atom Effect in Hybrid Zincophosphites. Inorganic Chemistry, 2019, 58, 9476-9481.	1.9	25
33	Five novel Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) coordination polymers based on bis(pyrazinyl)-triazole and varied polycarboxylates: syntheses, topologies and photoluminescence. CrystEngComm, 2014, 16, 11078-11087.	1.3	22
34	Multiple Detection Characteristics of Two Zinc Phosphonates: Syntheses, Crystal Structures, and Luminescent Properties. Crystal Growth and Design, 2019, 19, 5326-5333.	1.4	22
35	Luminescent Turn-On/Turn-Off Sensing Properties of a Water-Stable Cobalt-Based Coordination Polymer. Crystal Growth and Design, 2021, 21, 2332-2339.	1.4	22
36	Diverse architectures and luminescence properties of two novel copper(<scp>i</scp>) coordination polymers assembled from 2,6-bis[3-(pyrid-4-yl)-1,2,4-triazolyl]pyridine ligands. CrystEngComm, 2015, 17, 1541-1548.	1.3	21

#	Article	IF	CITATIONS
37	Enhanced Room-Temperature Phosphorescence of an Organic Ligand in 3D Hybrid Materials Assisted by Adjacent Halogen Atom. Inorganic Chemistry, 2020, 59, 972-975.	1.9	20
38	Bipyridine-triggered modulation of structure and properties of zinc-diphosphonates: coordination role <i>vs.</i> template rule. Dalton Transactions, 2018, 47, 1650-1656.	1.6	19
39	Cluster-Based Anionic Template Assisted in the Formation of 3D Cobalt Cationic Framework: A Bridge Connecting MOFs and Halometallates?. Inorganic Chemistry, 2018, 57, 11318-11321.	1.9	18
40	White-Light Emission and Magnetism Behaviors Endowed by Inorganic Lanthanide Templates in Iodocuprates. Crystal Growth and Design, 2019, 19, 1825-1831.	1.4	18
41	Coordinate bond- and hydrogen bond-assisted electron transfer strategy towards the generation of photochromic metal phosphites. Dalton Transactions, 2020, 49, 14598-14604.	1.6	18
42	Two Cobalt-diphosphonates Templated by Long-Chain Flexible Amines: Synthesis, Structures, Proton Conductivity, and Magnetic Properties. Crystal Growth and Design, 2018, 18, 3477-3483.	1.4	17
43	The Iodoargentate Framework as a High-Performance "Sweeper―for Specific Dye Pollutant. Crystal Growth and Design, 2018, 18, 6421-6425.	1.4	17
44	Two- and three-dimensional hybrid zinc phosphites: syntheses, structures and photoluminescence properties. Dalton Transactions, 2018, 47, 12468-12473.	1.6	17
45	Pure Inorganic Iodocuprate Framework Embedding In Situ Generated [Pb ₄ (OH) ₄] ⁴⁺ Cubic Template. Inorganic Chemistry, 2019, 58, 1746-1749.	1.9	16
46	Self-assembly of two high-nuclearity manganese calixarene-phosphonate clusters: diamond-like Mn ₁₆ and drum-like Mn ₁₄ . RSC Advances, 2015, 5, 33579-33585.	1.7	15
47	Switching the Zinc Diphosphonates from 1D Chain to 2D Layer and 3D Framework by the Modulation of a Flexible Organic Amine. Crystal Growth and Design, 2019, 19, 2919-2926.	1.4	15
48	Metal-dependent photochromic performance in two isostructural supramolecular chains. Dalton Transactions, 2021, 50, 546-552.	1.6	15
49	Hybrid Photochromic Lanthanide Phosphonate with Multiple Photoresponsive Functionalities. Inorganic Chemistry, 2022, 61, 8379-8385.	1.9	15
50	Ligand-oriented assembly of a porous metal–organic framework by [Cu ^I ₄ I ₄] clusters and paddle-wheel [Cu ^{II} ₂ (COO) ₄ (H ₂ O) ₂] subunits. CrystEngComm, 2016, 18, 8362-8365.	1.3	14
51	A Series of Iodoargentates Directed by Solvated Metal Cations Featuring Uptake and Photocatalytic Degradation of Organic Dye Pollutants. Chemistry - an Asian Journal, 2019, 14, 640-646.	1.7	12
52	Penta-nuclear [Ag ₅ 1 ₆] Cluster-Based Photochromic Hybrid: Synthesis, Structure, Dye Sorption, and Separation. Crystal Growth and Design, 2021, 21, 1055-1061.	1.4	11
53	Layered Hybrid Zincophosphites for Room Temperature Phosphorescent Emission. Inorganic Chemistry, 2018, 57, 14497-14500.	1.9	10
54	Construction of the Lanthanide Diphosphonates via a Template-Synthesis Strategy: Structures, Proton Conduction, and Magnetic Behavior. Crystal Growth and Design, 2019, 19, 3045-3051.	1.4	10

#	Article	IF	CITATIONS
55	Decorating Metal Nitrate with a Coplanar Bipyridine Moiety: A Simple and General Method for Fabricating Photochromic Complexes. Chemistry - A European Journal, 2021, 27, 4709-4714.	1.7	10
56	Novel silver(<scp>i</scp>) cluster-based coordination polymers as efficient luminescent thermometers. CrystEngComm, 2021, 23, 56-63.	1.3	9
57	Synthesis and structural characterization of five zinc bisphosphonate compounds. Solid State Sciences, 2017, 70, 47-53.	1.5	8
58	Heterometallic–Organic Framework from [Cu ₂ I ₂] and [PbO] _{<i>n</i>} Chains: Photoluminescence, Sensing, and Photocatalytic Performance. Crystal Growth and Design, 2021, 21, 5261-5267.	1.4	8
59	Template syntheses of diverse haloargentates with reversible photochromism behaviors and efficient photocatalytic properties. CrystEngComm, 2021, 23, 1588-1595.	1.3	8
60	Hydrothermal Synthesis and Structural Characterization of a New Hybrid Zinc Borate, [Zn(dap)2][B4O6(OH)2]. Journal of Cluster Science, 2017, 28, 1453-1462.	1.7	7
61	Construction of a transition metal complex directed iodocuprate as the visible light driven photocatalyst. Inorganic Chemistry Communication, 2020, 121, 108223.	1.8	7
62	Metal–organic complex-derived 3D porous carbon-supported g-C ₃ N ₄ /TiO ₂ as photocatalysts for the efficient degradation of antibiotic. CrystEngComm, 2021, 23, 4717-4723.	1.3	7
63	Low-Dimensional Lead(II) Halides with In Situ Generated Tripyridine-Derivatives as Countercations: Synthesis, Structures and Properties. Journal of Cluster Science, 2017, 28, 2669-2679.	1.7	6
64	Structural characterization, photoluminescence and sensing properties of two copper(I)-iodide compounds. Inorganic Chemistry Communication, 2018, 95, 144-148.	1.8	6
65	Achieving an electron transfer photochromic complex for switchable white-light emission. Chinese Chemical Letters, 2022, 33, 3203-3206.	4.8	6
66	Inserting protonated phenanthroline derivatives into the interchain voids of anionic halometallate units to generate hybrid materials with tunable photochromic performance. Dalton Transactions, 2022, 51, 4310-4316.	1.6	6
67	Modulating Coordination Microenvironment of Metal Ions to Tune the Photochromic Performances of Three Hybrid Zincophosphites with Isotopological Architecture. Crystal Growth and Design, 2021, 21, 7008-7014.	1.4	5
68	The structures, photoluminescence and photocatalytic properties of two types of iodocuprate hybrids. Inorganic Chemistry Communication, 2018, 97, 119-124.	1.8	4
69	Synthesis, crystal structure and magnetic property of a 3D Cu-organic framework. Inorganic Chemistry Communication, 2020, 112, 107713.	1.8	4
70	Template syntheses of cadmium/lead halides as luminescence thermometers. Inorganic Chemistry Communication, 2021, 131, 108765.	1.8	4
71	Modulating the structure and photochromic performance of hybrid metal chlorides with nonphotochromic 1,10-phenanthroline and its derivative. Dalton Transactions, 2021, 50, 18089-18096.	1.6	4
72	Large Conjugated Bis/Triimidazolium Derivatives Directed Iodobismuthates(III): Syntheses, Structures, and Visible-Light-Induced Photocatalytic Properties. Crystal Growth and Design, 2022, 22, 4601-4609.	1.4	4

#	Article	IF	CITATIONS
73	Excitation energy distribution between two photosystems inPorphyra yezoensis and its significance in photosynthesis evolution. Science Bulletin, 2001, 46, 49-52.	1.7	3
74	Syntheses and Crystal Structures of Three Organically Templated Gallium Phosphates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1011-1015.	0.6	2
75	Template-directed syntheses of two 3D metal oxalates: in situ N-methylation and crystal structures. Journal of Coordination Chemistry, 2017, 70, 84-92.	0.8	2
76	Engineering hydrophobic carbon sponge from metalâ^'organic complexes@melamine foam composite for advanced volatile organic compounds adsorption. Journal of Materials Science, 2021, 56, 9093-9105.	1.7	2
77	Synthesis, structure and fluorescent property of a hybrid zinc-diphosphonate. Inorganic Chemistry Communication, 2021, 125, 108426.	1.8	0