Javier Canales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393466/publications.pdf Version: 2024-02-01

LAVIED CANALES

#	Article	IF	CITATIONS
1	Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments. Frontiers in Plant Science, 2014, 5, 22.	3.6	116
2	<i>De novo</i> assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnology Journal, 2014, 12, 286-299.	8.3	115
3	Nitrate induction of root hair density is mediated by <scp>TGA</scp> 1/ <scp>TGA</scp> 4 and <scp>CPC</scp> transcription factors in <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 92, 305-316.	5.7	115
4	Nitrogen control of developmental phase transitions in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 5611-5618.	4.8	108
5	The glutamine synthetase gene family in Populus. BMC Plant Biology, 2011, 11, 119.	3.6	63
6	EuroPineDB: a high-coverage web database for maritime pine transcriptome. BMC Genomics, 2011, 12, 366.	2.8	59
7	Novel Insights into Regulation of Asparagine Synthetase in Conifers. Frontiers in Plant Science, 2012, 3, 100.	3.6	50
8	Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotechnology Journal, 2016, 14, 299-312.	8.3	45
9	Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 470.	3.6	44
10	Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum. Frontiers in Plant Science, 2015, 6, 911.	3.6	41
11	Transcriptome analysis in maritime pine using laser capture microdissection and 454 pyrosequencing. Tree Physiology, 2014, 34, 1278-1288.	3.1	38
12	The Integration of Electrical Signals Originating in the Root of Vascular Plants. Frontiers in Plant Science, 2017, 8, 2173.	3.6	36
13	Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis. Journal of Experimental Botany, 2015, 66, 3113-3127.	4.8	34
14	Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism. Journal of Experimental Botany, 2016, 67, 3095-3108.	4.8	34
15	Identification of genes regulated by ammonium availability in the roots of maritime pine trees. Amino Acids, 2010, 39, 991-1001.	2.7	30
16	Nitrate Defines Shoot Size through Compensatory Roles for Endoreplication and Cell Division in Arabidopsis thaliana. Current Biology, 2020, 30, 1988-2000.e3.	3.9	25
17	A maritime pine antimicrobial peptide involved in ammonium nutrition. Plant, Cell and Environment, 2011, 34, 1443-1453.	5.7	21
18	Gene expression profiling in the stem of young maritime pine trees: detection of ammonium stress-responsive genes in the apex. Trees - Structure and Function, 2012, 26, 609-619.	1.9	21

JAVIER CANALES

#	Article	IF	CITATIONS
19	Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster–Laccaria bicolor interaction. Planta, 2013, 237, 1637-1650.	3.2	18
20	The overexpression of the pine transcription factor <scp>PpDof</scp> 5 in <i>Arabidopsis</i> leads to increased lignin content and affects carbon and nitrogen metabolism. Physiologia Plantarum, 2015, 155, 369-383.	5.2	18
21	The Arabidopsis Transcription Factor CDF3 Is Involved in Nitrogen Responses and Improves Nitrogen Use Efficiency in Tomato. Frontiers in Plant Science, 2020, 11, 601558.	3.6	18
22	Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum. BMC Plant Biology, 2020, 20, 385.	3.6	13
23	Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight. BMC Plant Biology, 2018, 18, 327.	3.6	10
24	Transcriptomic and Physiological Response of Durum Wheat Grain to Short-Term Heat Stress during Early Grain Filling. Plants, 2022, 11, 59.	3.5	9
25	Transcriptome Analysis of Seed Weight Plasticity in Brassica napus. International Journal of Molecular Sciences, 2021, 22, 4449.	4.1	6
26	Integrative Transcriptomic and Metabolomic Analysis at Organ Scale Reveals Gene Modules Involved in the Responses to Suboptimal Nitrogen Supply in Tomato. Agronomy, 2021, 11, 1320.	3.0	6
27	GENIUS: web server to predict local gene networks and key genes for biological functions. Bioinformatics, 2017, 33, 760-761.	4.1	4
28	Evolutionary and Gene Expression Analyses Reveal New Insights into the Role of LSU Gene-Family in Plant Responses to Sulfate-Deficiency. Plants, 2022, 11, 1526.	3.5	3
29	Allelic diversity of three anthocyanin synthesis genes in accessions of native Solanum tuberosum L. ssp. tuberosum at the Potato Genebank of the Universidad Austral de Chile. Genetic Resources and Crop Evolution, 2022, 69, 297-314	1.6	2