
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new approach to simulate peat accumulation, degradation and stability in a global land surface scheme (JULES vn5.8_accumulate_soil) for northern and temperate peatlands. Geoscientific Model Development, 2022, 15, 1633-1657.	1.3	6
2	Assessment of Reactive Nitrogen Flows in Bangladesh's Agriculture Sector. Sustainability, 2022, 14, 272.	1.6	3
3	Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition. Environmental Science and Pollution Research, 2021, 28, 31792-31802.	2.7	4
4	Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	29
5	Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil. Biogeosciences, 2021, 18, 1559-1575.	1.3	9
6	Isoprene and monoterpene emissions from alder, aspen and spruce short-rotation forest plantations in the United Kingdom. Biogeosciences, 2021, 18, 2487-2510.	1.3	6
7	Impact of climate change on soil nitric oxide and nitrous oxide emissions from typical land uses in Scotland. Environmental Research Letters, 2021, 16, 055035.	2.2	6
8	Comparing Soil Nitrous Oxide and Methane Fluxes From Oil Palm Plantations and Adjacent Riparian Forests in Malaysian Borneo. Frontiers in Forests and Global Change, 2021, 4, .	1.0	4
9	Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield. Agriculture, Ecosystems and Environment, 2021, 319, 107571.	2.5	19
10	A first assessment of the sources of isoprene and monoterpene emissions from a short-rotation coppice Eucalyptus gunnii bioenergy plantation in the United Kingdom. Atmospheric Environment, 2021, 262, 118617.	1.9	4
11	Greenhouse gas budgets of severely polluted urban lakes in India. Science of the Total Environment, 2021, 798, 149019.	3.9	19
12	Agricultural soils: A sink or source of methane across the <scp>British Isles</scp> ?. European Journal of Soil Science, 2021, 72, 1842-1862.	1.8	8
13	Inference of spatial heterogeneity in surface fluxes from eddy covariance data: A case study from a subarctic mire ecosystem. Agricultural and Forest Meteorology, 2020, 280, 107783.	1.9	17
14	Managing Oil Palm Plantations More Sustainably: Large-Scale Experiments Within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme. Frontiers in Forests and Global Change, 2020, 2, .	1.0	29
15	Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20Âyears of experimental data. Environment International, 2020, 135, 105366.	4.8	30
16	Oil palm plantations are large sources of nitrous oxide, but where are the data to quantify the impact on global warming?. Current Opinion in Environmental Sustainability, 2020, 47, 81-88.	3.1	13
17	The impact of atmospheric N deposition and N fertilizer type on soil nitric oxide and nitrous oxide fluxes from agricultural and forest Eutric Regosols. Biology and Fertility of Soils, 2020, 56, 1077-1090.	2.3	13
18	Differences in isoprene and monoterpene emissions from cold-tolerant eucalypt species grown in the UK. Atmospheric Pollution Research, 2020, 11, 2011-2021.	1.8	7

#	Article	IF	CITATIONS
19	Differential Ecosystem Function Stability of Ammonia-Oxidizing Archaea and Bacteria following Short-Term Environmental Perturbation. MSystems, 2020, 5, .	1.7	17
20	Linking Nitrous Oxide and Nitric Oxide Fluxes to Microbial Communities in Tropical Forest Soils and Oil Palm Plantations in Malaysia in Laboratory Incubations. Frontiers in Forests and Global Change, 2020, 3, .	1.0	9
21	Litter Inputs, but Not Litter Diversity, Maintain Soil Processes in Degraded Tropical Forests—A Cross-Continental Comparison. Frontiers in Forests and Global Change, 2020, 2, .	1.0	22
22	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences, 2020, 17, 1583-1620.	1.3	21
23	Carbon–nitrogen interactions in European forests and semi-natural vegetation – Part 2: Untangling climatic, edaphic, management and nitrogen deposition effects on carbon sequestration potentials. Biogeosciences, 2020, 17, 1621-1654.	1.3	18
24	Application of Bayesian statistics to estimate nitrous oxide emission factors of three nitrogen fertilisers on UK grasslands. Environment International, 2019, 128, 362-370.	4.8	23
25	Litter Traits of Native and Non-Native Tropical Trees Influence Soil Carbon Dynamics in Timber Plantations in Panama. Forests, 2019, 10, 209.	0.9	12
26	Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy. Journal of Applied Ecology, 2019, 56, 85-92.	1.9	100
27	Greenhouse Gas (GHG) and Biogenic Volatile Organic Compound (bVOC) Fluxes Associated With Land-Use Change to Bioenergy Crops. , 2018, , 77-96.		2
28	The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes. Plant and Soil, 2017, 411, 193-208.	1.8	31
29	Measurement of the ¹³ C isotopic signature of methane emissions from northern European wetlands. Global Biogeochemical Cycles, 2017, 31, 605-623.	1.9	52
30	Difference in Soil Methane (CH4) and Nitrous Oxide (N2O) Fluxes from Bioenergy Crops SRC Willow and SRF Scots Pine Compared with Adjacent Arable and Fallow in a Temperate Climate. Bioenergy Research, 2017, 10, 575-582.	2.2	12
31	Estimation of cumulative fluxes of nitrous oxide: uncertainty in temporal upscaling and emission factors. European Journal of Soil Science, 2017, 68, 400-411.	1.8	41
32	Nitrous oxide emissions from a peatbog after 13Âyears of experimental nitrogen deposition. Biogeosciences, 2017, 14, 5753-5764.	1.3	10
33	The Indian Nitrogen Challenge in a Global Perspective. , 2017, , 9-28.		16
34	Growing season CH ₄ and N ₂ O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale. Biogeosciences, 2017, 14, 799-815.	1.3	22
35	The influence of tillage on N ₂ O fluxes from an intensively managed grazed grassland in Scotland. Biogeosciences, 2016, 13, 4811-4821.	1.3	26
36	The import and export of organic nitrogen species at a Scottish ombrotrophic peatland. Biogeosciences, 2016, 13, 2353-2365.	1.3	5

#	Article	IF	CITATIONS
37	A review of stereochemical implications in the generation of secondary organic aerosol from isoprene oxidation. Environmental Sciences: Processes and Impacts, 2016, 18, 1369-1380.	1.7	14
38	A comparison of isoprene and monoterpene emission rates from the perennial bioenergy crops shortâ€rotation coppice willow and <i>Miscanthus</i> and the annual arable crops wheat and oilseed rape. GCB Bioenergy, 2016, 8, 211-225.	2.5	24
39	Changes in isotopic signatures of soil carbon and CO ₂ respiration immediately and one year after <i>Miscanthus</i> removal. GCB Bioenergy, 2016, 8, 59-65.	2.5	8
40	Simulation of greenhouse gases following landâ€use change to bioenergy crops using the <scp>ECOSSE</scp> model: aÂcomparison between site measurements and model predictions. GCB Bioenergy, 2016, 8, 925-940.	2.5	19
41	CO ₂ fluxes and ecosystem dynamics at five European treeless peatlands – merging data and process oriented modeling. Biogeosciences, 2015, 12, 125-146.	1.3	27
42	Drivers of long-term variability in CO ₂ net ecosystem exchange in a temperate peatland. Biogeosciences, 2015, 12, 1799-1811.	1.3	75
43	Surface greenhouse gas fluxes downwind of a penguin colony in the maritime sub-Antarctic. Atmospheric Environment, 2015, 123, 9-17.	1.9	10
44	Direct nitrous oxide emissions from oilseed rape cropping – a metaâ€analysis. GCB Bioenergy, 2015, 7, 1260-1271.	2.5	50
45	Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	21
46	Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.	1.9	39
47	Effects of a 20-year old MiscanthusÂ×Âgiganteus stand and its removal on soil characteristics and greenhouse gas emissions. Biomass and Bioenergy, 2014, 69, 198-210.	2.9	39
48	Methane indicator values for peatlands: a comparison of species and functional groups. Global Change Biology, 2013, 19, 1141-1150.	4.2	35
49	Comparison of soil greenhouse gas fluxes from extensive and intensive grazing in a temperate maritime climate. Biogeosciences, 2013, 10, 1231-1241.	1.3	54
50	UK emissions of the greenhouse gas nitrous oxide. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1175-1185.	1.8	58
51	Methane emissions from soils: synthesis and analysis of a large <scp>UK</scp> data set. Global Change Biology, 2012, 18, 1657-1669.	4.2	107
52	Landâ€use change to bioenergy production in <scp>E</scp> urope: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy, 2012, 4, 372-391.	2.5	298
53	How do soil emissions of N ₂ O, <scp>CH</scp> ₄ and <scp>CO</scp> ₂ from perennial bioenergy crops differ from arable annual crops?. GCB Bioenergy, 2012, 4, 408-419.	2.5	113
54	Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland. European Journal of Soil Science, 2010, 61, 640-650.	1.8	82

#	Article	IF	CITATIONS
55	Development of an accumulationâ€based system for costâ€effective chamber measurements of inert trace gas fluxes. European Journal of Soil Science, 2010, 61, 785-792.	1.8	15
56	Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology, 2010, 16, 2750-2762.	4.2	212
57	Spatial and temporal variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland: Implications for modelling and up-scaling. Soil Biology and Biochemistry, 2009, 41, 1315-1323.	4.2	79
58	Biosphere–atmosphere exchange of reactive nitrogen and greenhouse gases at the NitroEurope core flux measurement sites: Measurement strategy and first data sets. Agriculture, Ecosystems and Environment, 2009, 133, 139-149.	2.5	104
59	Methyl bromide emissions to the atmosphere from temperate woodland ecosystems. Global Change Biology, 2008, 14, 2539-2547.	4.2	14
60	Temporal and spatial variation in methyl bromide flux from a salt marsh. Geophysical Research Letters, 2006, 33, .	1.5	22