Daniel Gallego-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393288/publications.pdf

Version: 2024-02-01

66 papers

2,200 citations

28 h-index 233125 45 g-index

70 all docs 70 docs citations

70 times ranked 3129 citing authors

#	Article	IF	CITATIONS
1	Phenotypic Plasticity of Invasive Edge Glioma Stem-like Cells in Response to Ionizing Radiation. Cell Reports, 2019, 26, 1893-1905.e7.	2.9	161
2	Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. Cancer Cell, 2016, 29, 201-213.	7.7	147
3	Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nature Nanotechnology, 2017, 12, 974-979.	15.6	122
4	Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab on A Chip, 2015, 15, 3147-3153.	3.1	92
5	Micro-/nanoscale electroporation. Lab on A Chip, 2016, 16, 4047-4062.	3.1	90
6	3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale, 2016, 8, 243-252.	2.8	88
7	Magnetic Tweezers-Based 3D Microchannel Electroporation for High-Throughput Gene Transfection in Living Cells. Small, 2015, 11, 1818-1828.	5.2	83
8	A Novel Endocrine Role for the BAT-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation, 2021, 143, 145-159.	1.6	81
9	Microphone based on Polyvinylidene Fluoride (PVDF) micro-pillars and patterned electrodes. Sensors and Actuators A: Physical, 2009, 153, 24-32.	2.0	77
10	Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. Small, 2016, 12, 5971-5980.	5.2	64
11	Targeted Delivery of Tumor Suppressor microRNA-1 by Transferrin- Conjugated Lipopolyplex Nanoparticles to Patient-Derived Glioblastoma Stem Cells. Current Pharmaceutical Biotechnology, 2014, 15, 839-846.	0.9	62
12	Molecular Beacon Nano-Sensors for Probing Living Cancer Cells. Trends in Biotechnology, 2017, 35, 347-359.	4.9	58
13	High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform. Lab on A Chip, 2010, 10, 775.	3.1	55
14	Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers. Surface and Coatings Technology, 2014, 258, 174-180.	2.2	55
15	lsotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dental Materials, 2011, 27, 581-589.	1.6	52
16	Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration. Lab on A Chip, 2012, 12, 4424.	3.1	49
17	Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage. Cytotechnology, 2010, 62, 109-120.	0.7	45
18	On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance. Nano Letters, 2016, 16, 5326-5332.	4.5	44

#	Article	IF	CITATIONS
19	Multilayer micromolding of degradable polymer tissue engineering scaffolds. Materials Science and Engineering C, 2008, 28, 353-358.	3.8	42
20	Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate. Microporous and Mesoporous Materials, 2010, 135, 131-136.	2.2	41
21	Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 399-409.	1.7	37
22	Nanomedicine-Based Strategies for Diabetes: Diagnostics, Monitoring, and Treatment. Trends in Endocrinology and Metabolism, 2020, 31, 448-458.	3.1	36
23	Lab-on-a-Chip Platforms for Biophysical Studies of Cancer with Single-Cell Resolution. Trends in Biotechnology, 2018, 36, 549-561.	4.9	33
24	Thermally grown TiO2 nanowires to improve cell growth and proliferation on titanium based materials. Ceramics International, 2013, 39, 5949-5954.	2.3	32
25	Single-cell trapping and selective treatment via co-flow within a microfluidic platform. Biosensors and Bioelectronics, 2014, 61, 298-305.	5.3	32
26	Nanotransfection-based vasculogenic cell reprogramming drives functional recovery in a mouse model of ischemic stroke. Science Advances, 2021, 7, .	4.7	32
27	Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia. Advanced Science, 2015, 2, 1500111.	5.6	31
28	Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals. Materials Science and Engineering C, 2008, 28, 347-352.	3.8	30
29	Atomic Carbide Bonding Leading to Superior Graphene Networks. Advanced Materials, 2013, 25, 4668-4672.	11.1	27
30	Versatile methods for the fabrication of polyvinylidene fluoride microstructures. Biomedical Microdevices, 2010, 12, 1009-1017.	1.4	26
31	Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dental Materials, 2012, 28, 1250-1260.	1.6	24
32	Gene Delivery to Cultured Embryonic Stem Cells Using Nanofiber-Based Sandwich Electroporation. Analytical Chemistry, 2013, 85, 1401-1407.	3.2	24
33	Portland cement for bone tissue engineering: Effects of processing and metakaolin blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 308-315.	1.6	22
34	Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study., 2021, 41, 90-107.		22
35	Vacuum-Assisted Cell Seeding in a Microwell Cell Culture System. Analytical Chemistry, 2010, 82, 2380-2386.	3.2	21
36	Controlled neuronal cell patterning and guided neurite growth on micropatterned nanofiber platforms. Journal of Micromechanics and Microengineering, 2015, 25, 125001.	1.5	20

#	Article	IF	Citations
37	Effect of Nonendocytic Uptake of Nanoparticles on Human Bronchial Epithelial Cells. Analytical Chemistry, 2015, 87, 3208-3215.	3.2	20
38	Nonviral Transfection With Brachyury Reprograms Human Intervertebral Disc Cells to a Proâ€Anabolic Antiâ€Catabolic/Inflammatory Phenotype: A Proof of Concept Study. Journal of Orthopaedic Research, 2019, 37, 2389-2400.	1,2	17
39	Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration— <i>In vitro</i> study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 762-769.	1.6	16
40	Neurogenic tissue nanotransfection in the management of cutaneous diabetic polyneuropathy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102220.	1.7	16
41	Micro/nanoscale technologies for the development of hormone-expressing islet-like cell clusters. Biomedical Microdevices, 2012, 14, 779-789.	1.4	15
42	Early Spreading and Propagation of Human Bone Marrow Stem Cells on Isotropic and Anisotropic Topographies of Silica Thin Films Produced via Microstamping. Microscopy and Microanalysis, 2010, 16, 670-676.	0.2	14
43	DNA translocation through short nanofluidic channels under asymmetric pulsed electric field. Biomicrofluidics, 2014, 8, 024114.	1.2	13
44	The human PMR1 endonuclease stimulates cell motility by down regulating miR-200 family microRNAs. Nucleic Acids Research, 2016, 44, 5811-5819.	6.5	12
45	Nanochannelâ€Based Poration Drives Benign and Effective Nonviral Gene Delivery to Peripheral Nerve Tissue. Advanced Biology, 2020, 4, e2000157.	3.0	12
46	Reinforced Portland cement porous scaffolds for loadâ€bearing bone tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 501-507.	1.6	11
47	In Situ Deployment of Engineered Extracellular Vesicles into the Tumor Niche via Myeloidâ€Derived Suppressor Cells. Advanced Healthcare Materials, 2022, 11, e2101619.	3.9	11
48	Surfaceâ€Mediated Nucleic Acid Delivery by Lipoplexes Prepared in Microwell Arrays. Small, 2013, 9, 2358-2367.	5.2	10
49	Early Intervention in Ischemic Tissue with Oxygen Nanocarriers Enables Successful Implementation of Restorative Cell Therapies. Cellular and Molecular Bioengineering, 2020, 13, 435-446.	1.0	9
50	Nanotechnology-Driven Cell-Based Therapies in Regenerative Medicine. AAPS Journal, 2022, 24, 43.	2.2	9
51	Nanoelectroporation and Collection of Genetically Modified Exosomes in Primary Cultures of Dendritic Cells. Methods in Molecular Biology, 2020, 2050, 79-84.	0.4	8
52	Guided migration analyses at the single-clone level uncover cellular targets of interest in tumor-associated myeloid-derived suppressor cell populations. Scientific Reports, 2020, 10, 1189.	1.6	7
53	Soft Lithography-Based Fabrication of Biopolymer Microparticles for Nutrient Microencapsulation. Industrial Biotechnology, 2012, 8, 365-371.	0.5	6
54	Bosch etching for the creation of a 3D nanoelectroporation system for high throughput gene delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33,	0.6	6

4

#	Article	IF	CITATIONS
55	Reciprocal Signaling between Myeloid Derived Suppressor and Tumor Cells Enhances Cellular Motility and is Mediated by Structural Cues in the Microenvironment. Advanced Biology, 2020, 4, 2000049.	3.0	6
56	Designer Extracellular Vesicles Modulate Proâ€Neuronal Cell Responses and Improve Intracranial Retention. Advanced Healthcare Materials, 2022, , 2100805.	3.9	6
57	Micropatterned Thermoresponsive Surfaces by Polymerization of Monomer Crystals: Modulating Cellular Morphology and Cell–Substrate Interactions. Analytical Chemistry, 2012, 84, 9439-9445.	3.2	4
58	Transient Middle Cerebral Artery Occlusion with an Intraluminal Suture Enables Reproducible Induction of Ischemic Stroke in Mice. Bio-protocol, 2022, 12, e4305.	0.2	4
59	Propagation of Human Bone Marrow Stem Cells for Craniofacial Applications. Stem Cells and Cancer Stem Cells, 2012, , 107-122.	0.1	3
60	Isolation and Nanoscale Electroporation of Primary Neuronal Cultures In Situ. Methods in Molecular Biology, 2020, 2050, 145-152.	0.4	2
61	Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration. Cellular and Molecular Bioengineering, 2015, 8, 496-506.	1.0	1
62	3D Si-based nanochannel platform for robust cell electroporation., 2015,,.		1
63	Nanofabrication: Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform (Small 43/2016). Small, 2016, 12, 5914-5914.	5. 2	1
64	Polymer MEMS for Measuring Single Cell Forces. , 2010, , .		0
65	Validation and Characterization of an Acoustic Sensor Based on PVDF Micropillars and Patterned Electrodes. , 2010, , .		0
66	Microwell Array-Mediated Delivery of Lipoplexes Containing Nucleic Acids for Enhanced Therapeutic Efficacy. Methods in Molecular Biology, 2015, 1218, 131-142.	0.4	0