Jaroslav Dolezel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5393154/publications.pdf Version: 2024-02-01

		8159	5806
392	32,801	76	161
papers	citations	h-index	g-index
433	433	433	18557
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .	6.0	2,424
2	A chromosome-based draft sequence of the hexaploid bread wheat (<i>Triticum aestivum</i>) genome. Science, 2014, 345, 1251788.	6.0	1,479
3	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	13.7	1,365
4	Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2007, 2, 2233-2244.	5.5	1,219
5	The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488, 213-217.	13.7	1,049
6	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	9.4	1,049
7	Letter to the editor. Cytometry, 2003, 51A, 127-128.	1.8	882
8	Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Annals of Botany, 2005, 95, 99-110.	1.4	790
9	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	6.0	768
10	Ancient hybridizations among the ancestral genomes of bread wheat. Science, 2014, 345, 1250092.	6.0	629
11	The Origin, Evolution and Proposed Stabilization of the Terms 'Genome Size' and 'C-Value' to Describe Nuclear DNA Contents. Annals of Botany, 2005, 95, 255-260.	1.4	622
12	Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum, 1992, 85, 625-631.	2.6	546
13	Structural and functional partitioning of bread wheat chromosome 3B. Science, 2014, 345, 1249721.	6.0	542
14	Two New Nuclear Isolation Buffers for Plant DNA Flow Cytometry: A Test with 37 Species. Annals of Botany, 2007, 100, 875-888.	1.4	472
15	Unlocking the Barley Genome by Chromosomal and Comparative Genomics Â. Plant Cell, 2011, 23, 1249-1263.	3.1	448
16	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	9.4	363
17	A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science, 2008, 322, 101-104.	6.0	356
18	Genome interplay in the grain transcriptome of hexaploid bread wheat. Science, 2014, 345, 1250091.	6.0	318

2

#	Article	IF	CITATIONS
19	The pangenome of hexaploid bread wheat. Plant Journal, 2017, 90, 1007-1013.	2.8	313
20	Plant Genome Size Estimation by Flow Cytometry: Inter-laboratory Comparison*1. Annals of Botany, 1998, 82, 17-26.	1.4	266
21	Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biology, 2016, 17, 221.	3.8	265
22	The genome of cowpea (<i>Vigna unguiculata</i> [L.] Walp.). Plant Journal, 2019, 98, 767-782.	2.8	264
23	The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genetics, 2013, 45, 1092-1096.	9.4	236
24	Sex determination in dioecious plantsMelandrium album andM. rubrum using high-resolution flow cytometry. Cytometry, 1995, 19, 103-106.	1.8	226
25	Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata andM.) Tj ETQq1 1 (0.784314 rgB1 1.9	[/Qyerlock 1(
26	Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nature Biotechnology, 2017, 35, 793-796.	9.4	218
27	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of <i>Aegilops tauschii,</i> the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7940-7945.	3.3	214
28	The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nature Plants, 2015, 1, 15186.	4.7	209
29	Flow Sorting of Mitotic Chromosomes in Common Wheat (<i>Triticum aestivum</i> L.). Genetics, 2000, 156, 2033-2041.	1.2	200
30	Reticulate Evolution of the Rye Genome. Plant Cell, 2013, 25, 3685-3698.	3.1	194
31	Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives Â. Plant Cell, 2011, 23, 1706-1718.	3.1	190
32	Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA, 2011, 2, 4.	1.3	186
33	Pm21 from Haynaldia villosa Encodes a CC-NBS-LRR Protein Conferring Powdery Mildew Resistance in Wheat. Molecular Plant, 2018, 11, 874-878.	3.9	181
34	Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13343-13346.	3.3	173
35	In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE, 2015, 10, e0143424.	1.1	172
36	A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 2021, 53, 574-584.	9.4	164

#	Article	IF	CITATIONS
37	Flow cytometric analysis of nuclear DNA content in higher plants. Phytochemical Analysis, 1991, 2, 143-154.	1.2	161
38	Estimation of nuclear DNA content in <i>Sesleria</i> (Poaceae). Caryologia, 1998, 51, 123-132.	0.2	159
39	A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L Planta, 1992, 188, 93-98.	1.6	157
40	Comparison of Four Nuclear Isolation Buffers for Plant DNA Flow Cytometry. Annals of Botany, 2006, 98, 679-689.	1.4	152
41	An Improved Consensus Linkage Map of Barley Based on Flow-Sorted Chromosomes and Single Nucleotide Polymorphism Markers. Plant Genome, 2011, 4, 238-249.	1.6	150
42	Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal, 2004, 39, 960-968.	2.8	146
43	Chromosome-based genomics in the cereals. Chromosome Research, 2007, 15, 51-66.	1.0	146
44	Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics, 2021, 53, 564-573.	9.4	138
45	Nextâ€generation sequencing and syntenic integration of flowâ€sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant Journal, 2012, 69, 377-386.	2.8	137
46	Gene Content and Virtual Gene Order of Barley Chromosome 1H Â Â Â. Plant Physiology, 2009, 151, 496-505.	2.3	135
47	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	2.4	130
48	Flow Cytometric and Microscopic Analysis of the Effect of Tannic Acid on Plant Nuclei and Estimation of DNA Content. Annals of Botany, 2006, 98, 515-527.	1.4	129
49	Improvement of the banana "Musa acuminata―reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics, 2016, 17, 243.	1.2	129
50	<i>Rht18</i> Semidwarfism in Wheat Is Due to Increased <i>GA 2-oxidaseA9</i> Expression and Reduced GA Content. Plant Physiology, 2018, 177, 168-180.	2.3	128
51	Development of Chromosome-Specific BAC Resources for Genomics of Bread Wheat. Cytogenetic and Genome Research, 2010, 129, 211-223.	0.6	127
52	Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome, 2003, 46, 893-905.	0.9	122
53	Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 104, 1362-1372.	1.8	120
54	Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics, 2008, 9, 294.	1.2	120

#	Article	IF	CITATIONS
55	Toward positional cloning of <i>Fhb1</i> , a major QTL for Fusarium head blight resistance in wheat. Cereal Research Communications, 2008, 36, 195-201.	0.8	118
56	Nuclear genome size: Are we getting closer?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2010, 77A, 635-642.	1.1	113
57	Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat Â. Plant Physiology, 2012, 161, 252-265.	2.3	113
58	Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theoretical and Applied Genetics, 2012, 124, 423-432.	1.8	110
59	Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodiversity and Conservation, 2017, 26, 801-824.	1.2	108
60	A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biology, 2008, 8, 95.	1.6	106
61	Sequencing and assembly of low copy and genic regions of isolated <i>Triticum aestivum</i> chromosome arm 7DS. Plant Biotechnology Journal, 2011, 9, 768-775.	4.1	105
62	Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theoretical and Applied Genetics, 2014, 127, 317-324.	1.8	105
63	Chromosomes in the flow to simplify genome analysis. Functional and Integrative Genomics, 2012, 12, 397-416.	1.4	104
64	BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnology Journal, 2016, 14, 1523-1531.	4.1	104
65	Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo―and neoduplicated subgenomes. Plant Journal, 2013, 76, 1030-1044.	2.8	99
66	High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant Journal, 2004, 37, 940-950.	2.8	95
67	Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica, 1996, 88, 25-34.	0.6	94
68	Flow cytometric analysis of nuclear DNA content in Musa. Theoretical and Applied Genetics, 1999, 98, 1344-1350.	1.8	92
69	Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biology, 2010, 10, 204.	1.6	90
70	Development and Characterization of Microsatellite Markers from Chromosome 1-Specific DNA Libraries of Vicia Faba. Biologia Plantarum, 2002, 45, 337-345.	1.9	87
71	Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Communications Biology, 2021, 4, 1047.	2.0	86
72	Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nature Plants, 2021, 7, 327-341.	4.7	85

#	Article	IF	CITATIONS
73	Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome Research, 1999, 7, 431-444.	1.0	83
74	SNP Discovery for mapping alien introgressions in wheat. BMC Genomics, 2014, 15, 273.	1.2	82
75	Plant Chromosome Analysis and Sorting by Flow Cytometry. Critical Reviews in Plant Sciences, 1994, 13, 275-309.	2.7	81
76	Duplicative Transfer of a MADS Box Gene to a Plant Y Chromosome. Molecular Biology and Evolution, 2003, 20, 1062-1069.	3.5	80
77	Nuclear genome size and genomic distribution of ribosomal DNA in <i>Musa</i> and <i>Ensete</i> (Musaceae): taxonomic implications. Cytogenetic and Genome Research, 2005, 109, 50-57.	0.6	80
78	Refined examination of plant metaphase chromosome structure at different levels made feasible by new isolation methods. Chromosoma, 1993, 102, 96-101.	1.0	79
79	Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta, 2005, 221, 815-822.	1.6	79
80	Did backcrossing contribute to the origin of hybrid edible bananas?. Annals of Botany, 2010, 106, 849-857.	1.4	79
81	Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnology Journal, 2013, 11, 564-571.	4.1	79
82	The ITS1-5.8S-ITS2 Sequence Region in the Musaceae: Structure, Diversity and Use in Molecular Phylogeny. PLoS ONE, 2011, 6, e17863.	1.1	79
83	Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Research, 2001, 9, 387-393.	1.0	78
84	Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Reports, 2003, 21, 483-490.	2.8	78
85	Chromosome Sorting in Tetraploid Wheat and Its Potential for Genome Analysis. Genetics, 2005, 170, 823-829.	1.2	78
86	Genome constitution and evolution in LoliumÂ×ÂFestuca hybrid cultivars (Festulolium). Theoretical and Applied Genetics, 2006, 113, 731-742.	1.8	77
87	Dissecting the U, M, S and C genomes of wild relatives of bread wheat (<i>Aegilops</i> spp.) into chromosomes and exploring their synteny with wheat. Plant Journal, 2016, 88, 452-467.	2.8	77
88	Localization of seed protein genes on flow-sorted field bean chromosomes. Chromosome Research, 1993, 1, 107-115.	1.0	76
89	Advances in plant chromosome genomics. Biotechnology Advances, 2014, 32, 122-136.	6.0	75
90	Cell cycle synchronization in plant root meristems. Cytotechnology, 1999, 21, 95-107.	0.7	71

#	Article	IF	CITATIONS
91	Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant Journal, 2006, 47, 977-986.	2.8	71

Nuclear DNA content and in vitro induced somatic polyploidization cassava (Manihot esculenta) Tj ETQq0 0 0 rgBT $\frac{10}{0.6}$ Coverlock $\frac{10}{70}$ Tf 50 70

93	Treatment ofVicia fabaroot tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation. Plant Journal, 1998, 16, 697-707.	2.8	69
94	Chromosome sorting and PCR-based physical mapping in pea (Pisum sativum L.). Chromosome Research, 2002, 10, 63-71.	1.0	69
95	Flow karyotyping and sorting of Vicia faba chromosomes. Theoretical and Applied Genetics, 1993, 85-85, 665-672.	1.8	67
96	Preparation of HMW DNA from Plant Nuclei and Chromosomes Isolated from Root Tips. Biologia Plantarum, 2003, 46, 369-373.	1.9	67
97	Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum, 1992, 85, 625-631.	2.6	67
98	Flow cytogenetics and plant genome mapping. Chromosome Research, 2004, 12, 77-91.	1.0	65
99	The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theoretical and Applied Genetics, 2018, 131, 2213-2227.	1.8	64
100	Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nature Communications, 2020, 11, 4488.	5.8	63
101	A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nature Communications, 2021, 12, 956.	5.8	63
102	Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theoretical and Applied Genetics, 1997, 94, 758-763.	1.8	62
103	Nuclear Î ³ -Tubulin during Acentriolar Plant Mitosis. Plant Cell, 2000, 12, 433-442.	3.1	62
104	A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evolutionary Biology, 2011, 11, 103.	3.2	62
105	Sequence-Based Analysis of Translocations and Inversions in Bread Wheat (Triticum aestivum L.). PLoS ONE, 2013, 8, e79329.	1.1	62
106	Association of gamma-tubulin with kinetochore/centromeric region of plant chromosomes. Plant Journal, 1998, 14, 751-757.	2.8	61
107	Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theoretical and Applied Genetics, 2004, 109, 1337-1345.	1.8	60
108	Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana (Musa Spp.). Frontiers in Plant Science, 2019, 10, 1503.	1.7	59

#	Article	IF	CITATIONS
109	Development of a composite map in Vicia faba, breeding applications and future prospects. Theoretical and Applied Genetics, 2004, 108, 1079-1088.	1.8	58
110	Limited Genome Size Variation in Sesleria albicans. Annals of Botany, 2000, 86, 399-403.	1.4	57
111	First Survey of the Wheat Chromosome 5A Composition through a Next Generation Sequencing Approach. PLoS ONE, 2011, 6, e26421.	1.1	57
112	Localization of Male-Specifically Expressed <i>MROS</i> Genes of <i>Silene latifolia</i> by PCR on Flow-Sorted Sex Chromosomes and Autosomes. Genetics, 2001, 158, 1269-1277.	1.2	56
113	Nuclear genome stability of Mammillaria san-angelensis (Cactaceae) regenerants induced by auxins in long-term in vitro culture. Plant Science, 1999, 141, 191-200.	1.7	54
114	A chromosomal genomics approach to assess and validate the <i>desi</i> and <i>kabuli</i> draft chickpea genome assemblies. Plant Biotechnology Journal, 2014, 12, 778-786.	4.1	54
115	Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLoS ONE, 2014, 9, e98918.	1.1	54
116	A platform for efficient genotyping in Musa using microsatellite markers. AoB PLANTS, 2011, 2011, plr024.	1.2	53
117	The Coiled-Coil NLR <i>Rph1</i> , Confers Leaf Rust Resistance in Barley Cultivar Sudan. Plant Physiology, 2019, 179, 1362-1372.	2.3	53
118	Construction of chromosome-specific DNA libraries covering the whole genome of field bean (Vicia) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf 5
119	Dissection of the nuclear genome of barley by chromosome flow sorting. Theoretical and Applied Genetics, 2006, 113, 651-659.	1.8	52
120	Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nature Communications, 2020, 11, 1123.	5.8	52
121	High-resolution flow karyotyping and chromosome sorting in Vicia faba lines with standard and reconstructed karyotypes. Theoretical and Applied Genetics, 1995, 90, 797-802.	1.8	51
122	Challenges of flowâ€cytometric estimation of nuclear genome size in orchids, a plant group with both wholeâ€genome and progressively partial endoreplication. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 958-966.	1.1	51
123	Rye B chromosomes encode a functional Argonauteâ€like protein with <i>inÂvitro</i> slicer activities similar to its A chromosome paralog. New Phytologist, 2017, 213, 916-928.	3.5	51
124	Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nature Communications, 2021, 12, 2563.	5.8	51
125	Subtraction with 3′ Modified Oligonucleotides Eliminates Amplification Artifacts in DNA Libraries Enriched for Microsatellites. BioTechniques, 1998, 25, 32-38.	0.8	50
126	Creation of a BAC resource to study the structure and evolution of the banana (Musa balbisiana)	0.9	50

genome. Genome, 2004, 47, 1182-1191.

#	Article	IF	CITATIONS
127	A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.sp. tritici genome. Functional and Integrative Genomics, 2011, 11, 671-677.	1.4	50
128	Genomic Prediction in a Multiploid Crop: Genotype by Environment Interaction and Allele Dosage Effects on Predictive Ability in Banana. Plant Genome, 2018, 11, 170090.	1.6	50
129	Molecular and Cytogenetic Study of East African Highland Banana. Frontiers in Plant Science, 2018, 9, 1371.	1.7	50
130	The bacterial artificial chromosome (BAC) library of the narrow-leafed lupin (Lupinus angustifolius) Tj ETQq0 0 0	rgBT_/Ove 2.7	rlock 10 Tf 50
131	Development and mapping of DArT markers within the Festuca - Lolium complex. BMC Genomics, 2009, 10, 473.	1.2	49
132	A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat Â. Plant Physiology, 2011, 157, 1596-1608.	2.3	49
133	Molecular Analysis and Genomic Organization of Major DNA Satellites in Banana (Musa spp.). PLoS ONE, 2013, 8, e54808.	1.1	49
134	Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theoretical and Applied Genetics, 2014, 127, 1091-1104.	1.8	49
135	Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theoretical and Applied Genetics, 2008, 117, 915-926.	1.8	48
136	Flow cytometric chromosome sorting in plants: The next generation. Methods, 2012, 57, 331-337.	1.9	48
137	Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M ^g of <i>Aegilops geniculata</i> . Plant Journal, 2015, 84, 733-746.	2.8	48
138	Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nature Communications, 2022, 13, 1607.	5.8	48
139	Analysis of Nuclear DNA Content and Ploidy in Higher Plants. Current Protocols in Cytometry, 1997, 2, Unit 7.6.	3.7	46
140	A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale) Tj ETQq0 0 0 rgB	T /Overloo 1.2	ck 10 Tf 50 22
141	A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biology, 2013, 14, R64.	3.8	45
142	Wholeâ€genome profiling and shotgun sequencing delivers an anchored, geneâ€decorated, physical map assembly of bread wheat chromosome 6A. Plant Journal, 2014, 79, 334-347.	2.8	45
143	Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B. DNA Research, 2014, 21, 103-114.	1.5	45
144	Primed in situ labelling facilitates flow sorting of similar sized chromosomes. Plant Journal, 1995, 7, 1039-1044.	2.8	44

#	Article	IF	CITATIONS
145	Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.). Chromosome Research, 2002, 10, 89-100.	1.0	44
146	DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (<i>Musa</i> spp.). Annals of Botany, 2016, 118, 1269-1278.	1.4	44
147	Ploidy instability of embryogenic cucumber (Cucumis sativus L.) callus culture. Biologia Plantarum, 1996, 38, 475.	1.9	43
148	Subgenomic analysis of microRNAs in polyploid wheat. Functional and Integrative Genomics, 2012, 12, 465-479.	1.4	43
149	Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 2013, 126, 1077-1101.	1.8	43
150	Chromosome Isolation by Flow Sorting in Aegilops umbellulata and Ae. comosa and Their Allotetraploid Hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE, 2011, 6, e27708.	1.1	43
151	Effectiveness of three micropropagation techniques to dissociate cytochimeras in Musa spp. Plant Cell, Tissue and Organ Culture, 2001, 66, 189-197.	1.2	42
152	Addition of Aegilops U and M Chromosomes Affects Protein and Dietary Fiber Content of Wholemeal Wheat Flour. Frontiers in Plant Science, 2017, 8, 1529.	1.7	42
153	Syntenic Relationships between the U and M Genomes of Aegilops, Wheat and the Model Species Brachypodium and Rice as Revealed by COS Markers. PLoS ONE, 2013, 8, e70844.	1.1	42
154	Physical Distribution of Homoeologous Recombination in Individual Chromosomes of <i>Festuca pratensis </i> in <i>Lolium multiflorum</i> . Cytogenetic and Genome Research, 2010, 129, 162-172.	0.6	41
155	Proteomic Analysis of Barley Cell Nuclei Purified by Flow Sorting. Cytogenetic and Genome Research, 2014, 143, 78-86.	0.6	41
156	Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biology, 2018, 19, 112.	3.8	41
157	Isolation of chromosomes from Pisum sativum L. hairy root cultures and their analysis by flow cytometry. Plant Science, 1998, 137, 205-215.	1.7	40
158	The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biology, 2013, 14, R138.	13.9	40
159	Inside a plant nucleus: discovering the proteins. Journal of Experimental Botany, 2015, 66, 1627-1640.	2.4	40
160	Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat. Plant Biotechnology Journal, 2018, 16, 1767-1777.	4.1	40
161	Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Research, 2002, 10, 695-706.	1.0	39
162	Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas. Biologia Plantarum, 1998, 41, 497-505.	1.9	38

#	Article	IF	CITATIONS
163	An advanced reference genome of <i>Trifolium subterraneum</i> L. reveals genes related to agronomic performance. Plant Biotechnology Journal, 2017, 15, 1034-1046.	4.1	38
164	Structure and evolution of Apetala3, a sex-linked gene in Silene latifolia. BMC Plant Biology, 2010, 10, 180.	1.6	37
165	Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Research, 2013, 21, 739-751.	1.0	37
166	Flow sorting of C-genome chromosomes from wild relatives of wheat <i>Aegilops markgrafii</i> , <i>Ae. triuncialis</i> and <i>Ae. cylindrica</i> , and their molecular organization. Annals of Botany, 2015, 116, 189-200.	1.4	37
167	LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Research, 2015, 22, 91-100.	1.5	37
168	The pangenome of banana highlights differences between genera and genomes. Plant Genome, 2022, 15, e20100.	1.6	37
169	Flow cytometric analysis of nuclear genome of the Ethiopian cereal tef [Eragrostis tef (Zucc.) Trotter]. Genetica, 1996, 98, 211-215.	0.5	36
170	Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild Emmer (Triticum dicoccoides). PLoS ONE, 2014, 9, e100160.	1.1	36
171	Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biology, 2014, 14, 379.	1.6	36
172	Sequencing of 15Â622 geneâ€bearing BAC s clarifies the geneâ€dense regions of the barley genome. Plant Journal, 2015, 84, 216-227.	2.8	36
173	Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE, 2017, 12, e0178734.	1.1	36
174	Molecular and Cytogenetic Characterization of Wild Musa Species. PLoS ONE, 2015, 10, e0134096.	1.1	36
175	Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theoretical and Applied Genetics, 2010, 121, 465-474.	1.8	35
176	Reference standards for flow cytometric estimation of absolute nuclear <scp>DNA</scp> content in plants. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 710-724.	1.1	35
177	Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications, 2022, 13, 2001.	5.8	35
178	Cytogenetics of Festulolium (<i>Festuca </i> × <i> Lolium</i> hybrids). Cytogenetic and Genome Research, 2008, 120, 370-383.	0.6	34
179	Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Research, 2011, 19, 729-739.	1.0	34
180	Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat–Triticum militinae introgression line. Theoretical and Applied Genetics, 2012, 125, 609-623.	1.8	34

#	Article	IF	CITATIONS
181	The Development of Male and Female Regenerants by In Vitro Androgenesis in Dioecious Plant Melandrium album. Annals of Botany, 1994, 73, 455-459.	1.4	33
182	Evolutionary conservation of kinetochore protein sequences in plants. Chromosoma, 2000, 109, 482-489.	1.0	33
183	BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	33
184	Alfalfa Embryogenic Cell Suspension Culture: Growth and Ploidy Level Stability. Journal of Plant Physiology, 1988, 133, 561-566.	1.6	32
185	Bivariate flow cytometry DNA/BrdUrd analysis of plant cell cycle. Cytotechnology, 1999, 21, 155-166.	0.7	32
186	Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombinationâ€poor region comprises more than half of barley chromosome 3 <scp>H</scp> . Plant Journal, 2015, 84, 385-394.	2.8	32
187	Sequencing chromosome 5D of <i>Aegilops tauschii</i> and comparison with its allopolyploid descendant bread wheat (<i>Triticum aestivum</i>). Plant Biotechnology Journal, 2015, 13, 740-752.	4.1	32
188	The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics, 2016, 17, 337.	1.2	32
189	Rapid identification and determination of purity of flow-sorted plant chromosomes using C-PRINS. Cytometry, 2000, 41, 102-108.	1.8	31
190	Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics, 2014, 15, 1080.	1.2	31
191	Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Scientific Reports, 2015, 5, 10763.	1.6	31
192	Nuclear DNA Content Variation among Central European Koeleria Taxa. Annals of Botany, 2006, 98, 117-122.	1.4	30
193	Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum. Chromosome Research, 2008, 16, 987-998.	1.0	30
194	A Physical Map of the Short Arm of Wheat Chromosome 1A. PLoS ONE, 2013, 8, e80272.	1.1	30
195	Localization of MPM-2 recognized phosphoproteins and tubulin during cell cycle progression in synchronized Vicia faba root meristem cells Cell Biology International, 1993, 17, 847-856.	1.4	29
196	Development of intron targeting (IT) markers specific for chromosome arm 4VS of Haynaldia villosa by chromosome sorting and next-generation sequencing. BMC Genomics, 2017, 18, 167.	1.2	29
197	Cytogenetic variability of in vitro regenerated Hypericum perforatum L. plants and their seed progenies. Plant Science, 1998, 133, 221-229.	1.7	28
198	Chromosomeâ€based survey sequencing reveals the genome organization of wild wheat progenitor <i>Triticum dicoccoides</i> . Plant Biotechnology Journal, 2018, 16, 2077-2087.	4.1	28

#	Article	IF	CITATIONS
199	Genomics of Banana and Plantain (Musa spp.), Major Staple Crops in the Tropics. , 2008, , 83-111.		28
200	Chromosome pairing of individual genomes in tall fescue (<i>Festuca arundinacea) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10 T 0.6	f 50 707 Td (8 27
201	2C or not 2C: a closer look at cell nuclei and their DNA content. Chromosoma, 2009, 118, 391-400.	1.0	27
202	Genetic mapping of DArT markers in the Festuca–Lolium complex and their use in freezing tolerance association analysis. Theoretical and Applied Genetics, 2011, 122, 1133-1147.	1.8	27
203	Flow Sorting and Sequencing Meadow Fescue Chromosome 4F. Plant Physiology, 2013, 163, 1323-1337.	2.3	27
204	Extensive Pericentric Rearrangements in the Bread Wheat (Triticum aestivum L.) Genotype "Chinese Spring―Revealed from Chromosome Shotgun Sequence Data. Genome Biology and Evolution, 2014, 6, 3039-3048.	1.1	27
205	Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 2015, 128, 273-282.	1.8	27
206	Fine Mapping of Lr49 Using 90K SNP Chip Array and Flow-Sorted Chromosome Sequencing in Wheat. Frontiers in Plant Science, 2019, 10, 1787.	1.7	27
207	Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS. Cytotechnology, 2001, 23, 71-82.	0.7	26
208	Chromosome analysis and sorting in Vicia sativa using flow cytometry. Biologia Plantarum, 2007, 51, 43-48.	1.9	26
209	Physical Mapping Integrated with Syntenic Analysis to Characterize the Gene Space of the Long Arm of Wheat Chromosome 1A. PLoS ONE, 2013, 8, e59542.	1.1	26
210	Discovery of multiâ€megabase polymorphic inversions by chromosome conformation capture sequencing in largeâ€genome plant species. Plant Journal, 2018, 96, 1309-1316.	2.8	26
211	Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theoretical and Applied Genetics, 2020, 133, 903-915.	1.8	26
212	Interspecific hybridization inBrassica: Application of flow cytometry for analysis of ploidy and genome composition in hybrid plants. Biologia Plantarum, 1993, 35, 169-177.	1.9	25
213	Induction, protein composition and DNA ploidy level of embryogenic calli of silver fir and its hybrids. Biologia Plantarum, 1995, 37, 169.	1.9	25
214	Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breeding, 2005, 124, 454-458.	1.0	25
215	Development of chromosomeâ€armâ€specific microsatellite markers in <i>Triticum aestivum</i> (Poaceae) using NGS technology. American Journal of Botany, 2012, 99, e369-71.	0.8	25
216	Multiple displacement amplification of the <scp>DNA</scp> from single flow–sorted plant chromosome. Plant Journal, 2015, 84, 838-844.	2.8	25

#	Article	IF	CITATIONS
217	Flow Analysis and Sorting of Plant Chromosomes. Current Protocols in Cytometry, 2016, 78, 5.3.1-5.3.43.	3.7	25
218	One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are. International Journal of Molecular Sciences, 2018, 19, 3554.	1.8	25
219	Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
220	Karyological and Cytophotometric Study of Callus Induction in Allium sativum L Journal of Plant Physiology, 1985, 118, 421-429.	1.6	24
221	Bivariate flow karyotyping in broad bean (Vicia faba). , 1997, 28, 236-242.		24
222	Functional features of a single chromosome arm in wheat (1AL) determined from its structure. Functional and Integrative Genomics, 2012, 12, 173-182.	1.4	24
223	Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Scientific Reports, 2016, 6, 36398.	1.6	24
224	Repetitive DNA: A Versatile Tool for Karyotyping in <i> Festuca pratensis</i> Huds Cytogenetic and Genome Research, 2017, 151, 96-105.	0.6	24
225	Prospects of telomereâ€ŧoâ€ŧelomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome. Plant Biotechnology Journal, 2022, 20, 1373-1386.	4.1	24
226	Sources of resistance in <i>Musa</i> to <i>Xanthomonas campestris</i> pv. <i>musacearum</i> , the causal agent of banana xanthomonas wilt. Plant Pathology, 2019, 68, 49-59.	1.2	23
227	Plant Chromosome Analysis and Sorting by Flow Cytometry. Critical Reviews in Plant Sciences, 1994, 13, 275-275.	2.7	23
228	Isolation and characterization of the highly repeated fraction of the banana genome. Cytogenetic and Genome Research, 2007, 119, 268-274.	0.6	22
229	Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics, 2010, 11, 122.	1.2	22
230	Genomic constitution of FestucaÂ×ÂLolium hybrids revealed by the DArTFest array. Theoretical and Applied Genetics, 2011, 122, 355-363.	1.8	22
231	Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biology, 2012, 12, 64.	1.6	22
232	Genotypeâ€specific <scp>SNP</scp> map based on whole chromosome 3 <scp>B</scp> sequence information from wheat cultivars <scp>A</scp> rina and <scp>F</scp> orno. Plant Biotechnology Journal, 2013, 11, 23-32.	4.1	22
233	An efficient approach to BAC based assembly of complex genomes. Plant Methods, 2016, 12, 2.	1.9	22
234	Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus <i>Cuscuta</i> . New Phytologist, 2021, 229, 2365-2377.	3.5	22

#	Article	IF	CITATIONS
235	The influence of 2,4-dichlorophenoxyacetic acid on cell cycle Kinetics and Sister-Chromatid Exchange Frequency in Garlic (Allium sativum L.) Meristem Cells. Biologia Plantarum, 1987, 29, 253-257.	1.9	21
236	Cloning and Characterization of New Repetitive Sequences in Field Bean (Vicia fabaL.). Annals of Botany, 1999, 83, 535-541.	1.4	21
237	Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype â€ ⁻ Chinese Spring' revealed by gene locations on homoeologous chromosomes. BMC Evolutionary Biology, 2015, 15, 37.	3.2	21
238	Development of DNA Markers From Physically Mapped Loci in Aegilops comosa and Aegilops umbellulata Using Single-Gene FISH and Chromosome Sequences. Frontiers in Plant Science, 2021, 12, 689031.	1.7	21
239	MK17, a specific marker closely linked to the gynoecium suppression region on the Y chromosome in Silene latifolia. Theoretical and Applied Genetics, 2006, 113, 280-287.	1.8	20
240	Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1. PLoS ONE, 2012, 7, e30784.	1.1	20
241	New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Science, 2015, 233, 200-212.	1.7	20
242	Genomic Diversity in Two Related Plant Species with and without Sex Chromosomes - Silene latifolia and S. vulgaris. PLoS ONE, 2012, 7, e31898.	1.1	19
243	A radiation hybrid map of chromosome 1D reveals synteny conservation at a wheat speciation locus. Functional and Integrative Genomics, 2013, 13, 19-32.	1.4	19
244	Flow Cytometry in Plant Research: A Success Story. Plant Cell Monographs, 2014, , 395-430.	0.4	19
245	The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biology and Evolution, 2016, 8, 1996-2005.	1.1	19
246	The Dark Matter of Large Cereal Genomes: Long Tandem Repeats. International Journal of Molecular Sciences, 2019, 20, 2483.	1.8	19
247	Chromosome genomics uncovers plant genome organization and function. Biotechnology Advances, 2021, 46, 107659.	6.0	19
248	Chromosome analysis and sorting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 328-342.	1.1	19
249	Longâ€range assembly of sequences helps to unravel the genome structure and small variation of the wheat– <i>Haynaldia villosa</i> translocated chromosome 6VS.6AL. Plant Biotechnology Journal, 2021, 19, 1567-1578.	4.1	19
250	Staining of fungal cell walls with fluorescent brighteners: Flow-cytometric analysis. Folia Microbiologica, 1990, 35, 437-442.	1.1	18
251	Sorting of plant chromosomes. Methods in Cell Biology, 2001, 64, 3-31.	0.5	18
252	Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat. BMC Plant Biology, 2012, 12, 155.	1.6	18

#	Article	IF	CITATIONS
253	A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B. BMC Genomics, 2015, 16, 595.	1.2	18
254	Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae. New Biotechnology, 2016, 33, 718-727.	2.4	18
255	Integration of Genetic and Cytogenetic Maps and Identification of Sex Chromosome in Garden Asparagus (Asparagus officinalis L.). Frontiers in Plant Science, 2018, 9, 1068.	1.7	18
256	Identification of a Dominant Chlorosis Phenotype Through a Forward Screen of the Triticum turgidum cv. Kronos TILLING Population. Frontiers in Plant Science, 2019, 10, 963.	1.7	18
257	Chapter 6 Cell Cycle Synchronization, Chromosome Isolation, and Flow-Sorting in Plants. Methods in Cell Biology, 1995, 50, 61-83.	0.5	17
258	Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers. Plant Breeding, 2012, 131, 345-349.	1.0	17
259	Dissection of barley chromosomes 1H and 6H by the gametocidal system. Genes and Genetic Systems, 2014, 89, 203-214.	0.2	17
260	The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics, 2015, 16, 453.	1.2	17
261	Association genetics of bunch weight and its component traits in East African highland banana (Musa) Tj ETQq1 1	0.784314 1.8	1 ₁ gBT /Over
262	Chromosome Painting in Cultivated Bananas and Their Wild Relatives (Musa spp.) Reveals Differences in Chromosome Structure. International Journal of Molecular Sciences, 2020, 21, 7915.	1.8	17
263	Functional Divergence of Microtubule-Associated TPX2 Family Members in Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 2183.	1.8	17
264	Chromosome Analysis and Sorting Using Flow Cytometry. Methods in Molecular Biology, 2011, 701, 221-238.	0.4	17
265	Genetic Diversity of Blumeria graminis f. sp. hordei in Central Europe and Its Comparison with Australian Population. PLoS ONE, 2016, 11, e0167099.	1.1	17
266	The effects of colchicine on ploidy level, morphology and embryogenic capacity of alfalfa suspension cultures. Plant Science, 1989, 64, 213-219.	1.7	16
267	TPX2 Protein of Arabidopsis Activates Aurora Kinase 1, But Not Aurora Kinase 3 In Vitro. Plant Molecular Biology Reporter, 2015, 33, 1988-1995.	1.0	16
268	Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics, 2015, 16, 375.	1.2	16
269	Structural Variations Affecting Genes and Transposable Elements of Chromosome 3B in Wheats. Frontiers in Genetics, 2020, 11, 891.	1.1	16
270	Best practices in plant cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 311-317.	1.1	16

#	Article	IF	CITATIONS
271	Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS. , 2001, , 71-82.		16
272	Chromosome Genomics in the Triticeae. , 2009, , 285-316.		15
273	Common Wheat Chromosome 5B Composition Analysis Using Lowâ€Coverage 454 Sequencing. Plant Genome, 2014, 7, plantgenome2013.10.0031.	1.6	15
274	Collection of new diversity of wild and cultivated bananas (Musa spp.) in the Autonomous Region of Bougainville, Papua New Guinea. Genetic Resources and Crop Evolution, 2018, 65, 2267-2286.	0.8	15
275	Accessing a Russian Wheat Aphid Resistance Gene in Bread Wheat by Longâ€Read Technologies. Plant Genome, 2019, 12, 180065.	1.6	15
276	Mitotic chromosome organization: General rules meet species-specific variability. Computational and Structural Biotechnology Journal, 2020, 18, 1311-1319.	1.9	15
277	Dynamics of endoreduplication in developing barley seeds. Journal of Experimental Botany, 2021, 72, 268-282.	2.4	15
278	Genetic Diversity of Turf‶ype Tall Fescue Using Diversity Arrays Technology. Crop Science, 2012, 52, 408-412.	0.8	14
279	Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH. Methods in Molecular Biology, 2016, 1429, 49-64.	0.4	14
280	Rapid Gene Isolation Using MutChromSeq. Methods in Molecular Biology, 2017, 1659, 231-243.	0.4	14
281	Dissecting the Complex Genome of Crested Wheatgrass by Chromosome Flow Sorting. Plant Genome, 2019, 12, 180096.	1.6	14
282	Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus. International Journal of Molecular Sciences, 2019, 20, 1448.	1.8	14
283	LYS3 encodes a prolamin-box-binding transcription factor that controls embryo growth in barley and wheat. Journal of Cereal Science, 2020, 93, 102965.	1.8	14
284	Reciprocal allopolyploid grasses (<i>Festuca</i> × <i>Lolium</i>) display stable patterns of genome dominance. Plant Journal, 2021, 107, 1166-1182.	2.8	14
285	Genome Size. Journal of Botany, 2010, 2010, 1-4.	1.2	14
286	Karyo-taxonomic study of the genusPseudolysimachion (Scrophulariaceae) in the Czech Republic and Slovakia. Folia Geobotanica, 2004, 39, 173-203.	0.4	13
287	Localization of BAC clones on mitotic chromosomes of Musa acuminata using fluorescence in situ hybridization. Biologia Plantarum, 2008, 52, 445-452.	1.9	13
288	Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat. BMC Genomics, 2013, 14, 222.	1.2	13

#	Article	IF	CITATIONS
289	Preparation of sub-genomic fractions enriched for particular chromosomes in polyploid wheat. Biologia Plantarum, 2015, 59, 445-455.	1.9	13
290	Stability of Genome Composition and Recombination between Homoeologous Chromosomes in <i>Festulolium</i> (<i>Festuca × Lolium</i>) Cultivars. Cytogenetic and Genome Research, 2017, 151, 106-114.	0.6	13
291	DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. Journal of Experimental Botany, 2020, 71, 6262-6272.	2.4	13
292	A lineage-specific Exo70 is required for receptor kinase–mediated immunity in barley. Science Advances, 2022, 8, .	4.7	13
293	Morphometric and karyological analysis of a population ofSesleria sadleriana Janka in the Biele Karpaty Mountains (Slovakia). Folia Geobotanica, 1997, 32, 47-55.	0.4	12
294	Isolation of Chromosomes from Picea abies and their Analysis by Flow Cytometry. Biologia Plantarum, 2004, 48, 199-203.	1.9	12
295	Hyperexpansion of wheat chromosomes sorted by flow cytometry. Genes and Genetic Systems, 2014, 89, 181-185.	0.2	12
296	The utility of flow sorting to identify chromosomes carrying a single copy transgene in wheat. Plant Methods, 2016, 12, 24.	1.9	12
297	Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genomics, 2018, 19, 80.	1.2	12
298	Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theoretical and Applied Genetics, 2019, 132, 2881-2898.	1.8	12
299	Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH. International Journal of Molecular Sciences, 2019, 20, 4143.	1.8	12
300	Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. Crop Journal, 2020, 8, 676-681.	2.3	12
301	Multiple origins of Indian dwarf wheat by mutations targeting the TREE domain of a GSK3-like kinase for drought tolerance, phosphate uptake, and grain quality. Theoretical and Applied Genetics, 2021, 134, 633-645.	1.8	12
302	Optimization of PRINS and C-PRINS for detection of telomeric sequences in Vicia faba. Biologia Plantarum, 1998, 41, 177-184.	1.9	11
303	Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach. Plant Genome, 2015, 8, eplantgenome2015.03.0011.	1.6	11
304	Traditional Banana Diversity in Oceania: An Endangered Heritage. PLoS ONE, 2016, 11, e0151208.	1.1	11
305	Flow Sorting Plant Chromosomes. Methods in Molecular Biology, 2016, 1429, 119-134.	0.4	11
306	Physical Map of the Short Arm of Bread Wheat Chromosome 3D. Plant Genome, 2017, 10, plantgenome2017.03.0021.	1.6	11

#	Article	IF	CITATIONS
307	A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A. Frontiers in Plant Science, 2017, 7, 2063.	1.7	11
308	Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. Theoretical and Applied Genetics, 2019, 132, 1061-1072.	1.8	11
309	Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biology, 2020, 20, 280.	1.6	11
310	Plant flow cytometry—Far beyond the stone age. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 579-580.	1.1	10
311	Computational Identification and Comparative Analysis of miRNAs in Wheat Group 7 Chromosomes. Plant Molecular Biology Reporter, 2014, 32, 487-500.	1.0	10
312	The <i>in silico</i> identification and characterization of a bread wheat/ <i>Triticum militinae</i> introgression line. Plant Biotechnology Journal, 2017, 15, 249-256.	4.1	10
313	Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order. BMC Genomics, 2017, 18, 791.	1.2	10
314	Large-Scale Structural Variation Detection in Subterranean Clover Subtypes Using Optical Mapping. Frontiers in Plant Science, 2018, 9, 971.	1.7	10
315	Frequent occurrence of triploid hybrids Festuca pratensis × F. apennina in the Swiss Alps. Alpine Botany, 2018, 128, 121-132.	1.1	10
316	Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multiâ€omics approach. Plant Genome, 2022, , e20191.	1.6	10
317	Cytogenetic effect of plant tissue culture medium with certain growth substances onAllium sativum L. meristem root tip cells. Biologia Plantarum, 1984, 26, 293-298.	1.9	9
318	Development of Molecular Cytogenetics and Physical Mapping of Ribosomal RNA Genes in Lupinus. Biologia Plantarum, 2003, 46, 211-215.	1.9	9
319	Transposable Element Junctions in Marker Development and Genomic Characterization of Barley. Plant Genome, 2014, 7, plantgenome2013.10.0036.	1.6	9
320	Expression response of duplicated metallothionein 3 gene to copper stress in Silene vulgaris ecotypes. Protoplasma, 2014, 251, 1427-1439.	1.0	9
321	Orthology Guided Transcriptome Assembly of Italian Ryegrass and Meadow Fescue for Singleâ€Nucleotide Polymorphism Discovery. Plant Genome, 2016, 9, plantgenome2016.02.0017.	1.6	9
322	Integrated physical map of bread wheat chromosome arm 7DS to facilitate gene cloning and comparative studies. New Biotechnology, 2019, 48, 12-19.	2.4	9
323	Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (<i>Lolium) Tj ETQq1 1 2021, 72, 254-267.</i>	0.784314 2.4	l rgBT /Overlo 9
324	Vicia faba germination: Synchronized cell growth and localization of nucleolin and α-tubulin Seed Science Research, 1999, 9, 297-304.	0.8	8

#	Article	IF	CITATIONS
325	High-throughput physical map anchoring via BAC-pool sequencing. BMC Plant Biology, 2015, 15, 99.	1.6	8
326	Genomics of Wild Relatives and Alien Introgressions. , 2015, , 347-381.		8
327	An Increasing Need for Productive and Stress Resilient Festulolium Amphiploids: What Can Be Learnt from the Stable Genomic Composition of Festuca pratensis subsp. apennina (De Not.) Hegi?. Frontiers in Environmental Science, 2016, 4, .	1.5	8
328	UNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle. Nucleus, 2017, 8, 70-80.	0.6	8
329	Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Scientific Reports, 2019, 9, 19362.	1.6	8
330	Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL. BMC Genomics, 2022, 23, 228.	1.2	8
331	Effect of 2-aminoindan-2-phosphonic acid on cell cycle progression in synchronous meristematic cells of Vicia faba roots. Plant Science, 2003, 164, 823-832.	1.7	7
332	Chromosomal genomics facilitates fine mapping of a Russian wheat aphid resistance gene. Theoretical and Applied Genetics, 2015, 128, 1373-1383.	1.8	7
333	Molecular Cytogenetic Mapping of Satellite DNA Sequences in <i>Aegilops geniculata</i> and Wheat. Cytogenetic and Genome Research, 2016, 148, 314-321.	0.6	7
334	Chromosome identification for the carnivorous plant Genlisea margaretae. Chromosoma, 2017, 126, 389-397.	1.0	7
335	Sequence divergence between spelt and common wheat. Theoretical and Applied Genetics, 2018, 131, 1125-1132.	1.8	7
336	Chromosome Flow Sorting and Physical Mapping. , 2005, , 151-171.		6
337	A haplotype specific to North European wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 2017, 64, 653-664.	0.8	6
338	Selective Elimination of Parental Chromatin from Introgression Cultivars of xFestulolium (Festuca $ ilde{A}-$) Tj ETQqO (0 0 ₁ .gBT /0	Overlock 10 T
339	The improved assembly of 7DL chromosome provides insight into the structure and evolution of bread wheat. Plant Biotechnology Journal, 2020, 18, 732-742.	4.1	6
340	Cytological and Molecular Characterization for Ploidy Determination in Yams (Dioscorea spp.). Agronomy, 2021, 11, 1897.	1.3	6
341	Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. International Journal of Molecular Sciences, 2022, 23, 3821.	1.8	6
342	Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers. International Journal of Molecular Sciences, 2022, 23, 3191.	1.8	6

#	Article	IF	CITATIONS
343	A combined PRINS-FISH technique for simultaneous localisation of DNA sequences on plant chromosomes. Biologia Plantarum, 1998, 41, 293-296.	1.9	5
344	Condensation of rye chromatin in somatic interphase nuclei of <i>Ph1</i> and <i>ph1b</i> wheat. Cytogenetic and Genome Research, 2007, 119, 263-267.	0.6	5
345	A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp Scientific Reports, 2020, 10, 5016.	1.6	5
346	Proteome Analysis of Condensed Barley Mitotic Chromosomes. Frontiers in Plant Science, 2021, 12, 723674.	1.7	5
347	Transfer of the ph1b Deletion Chromosome 5B From Chinese Spring Wheat Into a Winter Wheat Line and Induction of Chromosome Rearrangements in Wheat-Aegilops biuncialis Hybrids. Frontiers in Plant Science, 0, 13, .	1.7	5
348	Flow cytometric analysis of variation in the level of nuclear DNA endoreduplication in the cotyledons amongst <i>Vigna radiata</i> cultivars. Caryologia, 2004, 57, 262-266.	0.2	4
349	Collecting banana diversity in eastern Indonesia. Acta Horticulturae, 2016, , 19-26.	0.1	4
350	In silico annotation of 458 genes identified from comparative analysis of Full length cDNAs and NextGen Sequence of chromosome 2A of hexaploid wheat. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 25-34.	0.9	4
351	Inter-morphotype hybridization in tall fescue (Festuca arundinacea Schreb.): exploration of meiotic irregularities and potential for breeding. Euphytica, 2019, 215, 1.	0.6	4
352	Kinetics of DNA Repair in Vicia faba Meristem Regeneration Following Replication Stress. Cells, 2021, 10, 88.	1.8	4
353	Targeted Sequencing of the Short Arm of Chromosome 6V of a Wheat Relative Haynaldia villosa for Marker Development and Gene Mining. Agronomy, 2021, 11, 1695.	1.3	4
354	Construction of bacterial artificial chromosome (BAC) libraries of banana (Musa acuminataandMusa) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
355	Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies. PLoS ONE, 2017, 12, e0183745.	1.1	4
356	Karyotype Differentiation in Cultivated Chickpea Revealed by Oligopainting Fluorescence in situ Hybridization. Frontiers in Plant Science, 2021, 12, 791303.	1.7	4
357	Effect of anti-microtubular drug amiprophos-methyl on somatic embryogenesis and DNA ploidy levels in alfalfa and carrot cell suspension cultures. Biologia Plantarum, 1993, 35, 329-339.	1.9	3
358	Flow Analysis and Sorting of Plant Chromosomes. Current Protocols in Cytometry, 1999, 9, Unit 5.3.	3.7	3
359	Introduction. Chromosome Research, 2004, 12, 1-4.	1.0	3

#	Article	IF	CITATIONS
361	Chromosome sorting and its applications in common wheat (Triticum aestivum) genome sequencing. Science Bulletin, 2010, 55, 1463-1468.	1.7	3
362	Intact DNA purified from flow-sorted nuclei unlocks the potential of next-generation genome mapping and assembly in Solanum species. MethodsX, 2018, 5, 328-336.	0.7	3
363	Sequential Estimation of Nuclear DNA and Silver Staining of Nucleoli in Plant Cells. Biotechnic & Histochemistry, 1989, 64, 9-13.	0.4	2
364	Improvement of accuracy of scanning absorption measurementof nuclear DNA content in plants. Acta Histochemica, 1989, 86, 123-127.	0.9	2
365	Segregation in the progeny of transformed rapeseed (Brassica napus). Biologia Plantarum, 1992, 34, 53-61.	1.9	2
366	Multiple, concentration-dependent effects of sucrose, auxins and cytokinins in explant cultures of kale and tobacco. Acta Physiologiae Plantarum, 2014, 36, 1981-1991.	1.0	2
367	Cytogenetics of Cicer. Compendium of Plant Genomes, 2017, , 25-41.	0.3	2
368	Genome size in some taxa ofCrepisL. (Asteraceae) from Turkey. Caryologia, 2018, 71, 217-223.	0.2	2
369	Flow Cytogenetics. , 2004, , 460-463.		2
370	Cytogenetic insights into Festulolium. Biologia Plantarum, 0, 64, 598-603.	1.9	2
371	If Mendel Was Using CRISPR: Genome Editing Meets Nonâ€Mendelian Inheritance. Advanced Functional Materials, 0, , 2202585.	7.8	2
372	Potential of flow cytometry for monitoring genetic stability of banana embryogenic cell suspension cultures. , 2005, , 337-344.		1
373	DArTFest – A Platform for High-Throughput Genome Profiling Within the Festuca – Lolium Complex. , 2010, , 443-448.		1
374	A SIMPLE AND ROBUST APPROACH FOR GENOTYPING IN MUSACEAE. Acta Horticulturae, 2013, , 241-246.	0.1	1
375	Construction of BAC Libraries from Flow-Sorted Chromosomes. Methods in Molecular Biology, 2016, 1429, 135-149.	0.4	1
376	Identification of Plant Nuclear Proteins Based on a Combination of Flow Sorting, SDS-PAGE, and LC-MS/MS Analysis. Methods in Molecular Biology, 2018, 1696, 57-79.	0.4	1
377	Chromosomal Genomics of Barley. Compendium of Plant Genomes, 2018, , 45-56.	0.3	1
378	Comparative analysis of chromosome 2A molecular organization in diploid and hexaploid wheat. Molecular Biology Reports, 2020, 47, 1991-2003.	1.0	1

#	Article	IF	CITATIONS
379	Molecular organization of recombinant human-Arabidopsis chromosomes in hybrid cell lines. Scientific Reports, 2021, 11, 7160.	1.6	1
380	Epigenetic Distribution of Recombinant Plant Chromosome Fragments in a Human–Arabidopsis Hybrid Cell Line. International Journal of Molecular Sciences, 2021, 22, 5426.	1.8	1
381	Rye Cytogenetics and Chromosome Genomics. Compendium of Plant Genomes, 2021, , 43-62.	0.3	1
382	Nuclear g-Tubulin during Acentriolar Plant Mitosis. Plant Cell, 2000, 12, 433.	3.1	0
383	Cloning and Characterization of New Repetitive Sequences in Field Bean (Vicia faba L.). Annals of Botany, 2000, 85, 157.	1.4	0
384	The Effects of DNA Synthesis Inhibitors on Cell Cycle Synchronization in Cucumber (Cucumis sativus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
385	Mapping the nuclear proteome of barley in different phases of the cell cycle. New Biotechnology, 2016, 33, S23.	2.4	0
386	Chromosomal Allocation of DNA Sequences in Wheat Using Flow-Sorted Chromosomes. Methods in Molecular Biology, 2016, 1469, 157-170.	0.4	0
387	Discovering the World of Plant Nuclear Proteins. , 2016, , 22-36.		0

388	Development of the BAC Physical Maps of Wheat Chromosome 6B for Its Genomic Sequencing. , 2015, , 101-107.	0
389	Sequencing of Wheat Chromosome 6B: Toward Functional Genomics. , 2015, , 111-116.	0

390	Sequence analysis of Erianthus arundinaceus chromosome 1 isolated by flow sorting after genomic in situ hybridization in suspension. Crop Journal, 2022, , .	2.3	0
391	Chromosome-centric approaches in crop genomics: Focus on Mendel's pea plant. Czech Journal of Genetics and Plant Breeding, 2022, 58, 96-112.	0.4	Ο
392	Application of an optical immersion-gel in a flow cytometer with horizontally oriented objective.	0.7	0

³⁹²Biotechnic and Histochemistry, 2001, 76, 11-14.