
Garikoitz Beobide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5392988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copperâ€Based Metal–Organic Porous Materials for CO ₂ Electrocatalytic Reduction to Alcohols. ChemSusChem, 2017, 10, 1100-1109.	3.6	316
2	Development of multifunctional sol–gel coatings: Anti-reflection coatings with enhanced self-cleaning capacity. Solar Energy Materials and Solar Cells, 2010, 94, 1081-1088.	3.0	174
3	Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. Journal of CO2 Utilization, 2019, 33, 157-165.	3.3	163
4	Methanol electrosynthesis from CO 2 at Cu 2 O/ZnO prompted by pyridine-based aqueous solutions. Journal of CO2 Utilization, 2017, 18, 164-172.	3.3	123
5	Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO ₂ reduction. RSC Advances, 2018, 8, 21092-21099.	1.7	108
6	Supramolecular Architectures and Magnetic Properties of Coordination Polymers Based on Pyrazinedicarboxylato Ligands Showing Embedded Water Clusters. Inorganic Chemistry, 2006, 45, 5367-5382.	1.9	83
7	Metal–carboxylato–nucleobase systems: From supramolecular assemblies to 3D porous materials. Coordination Chemistry Reviews, 2013, 257, 2716-2736.	9.5	81
8	Rational Design of 2D Magnetic Metalâ^'Organic Coordination Polymers Assembled from Oxalato and Dipyridyl Spacers. Crystal Growth and Design, 2006, 6, 1839-1847.	1.4	80
9	Supramolecular architectures assembled by the interaction of purine nucleobases with metal-oxalato frameworks. Non-covalent stabilization of the 7H-adenine tautomer in the solid-state. Dalton Transactions, 2006, , 902-911.	1.6	76
10	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 13969-13977.	7.2	73
11	Scandium/Alkaline Metal–Organic Frameworks: Adsorptive Properties and Ionic Conductivity. Chemistry of Materials, 2016, 28, 2519-2528.	3.2	68
12	A direct reaction approach for the synthesis of zeolitic imidazolate frameworks: template and temperature mediated control on network topology and crystal size. Chemical Communications, 2012, 48, 9930.	2.2	61
13	Lanthanide(III)/Pyrimidine-4,6-dicarboxylate/Oxalate Extended Frameworks: A Detailed Study Based on the Lanthanide Contraction and Temperature Effects. Inorganic Chemistry, 2011, 50, 8437-8451.	1.9	60
14	Development of content-stable phase change composites by infiltration into inorganic porous supports. Solar Energy Materials and Solar Cells, 2015, 134, 318-328.	3.0	59
15	Paddle-Wheel Shaped Copper(II)-Adenine Discrete Entities As Supramolecular Building Blocks To Afford Porous Supramolecular Metal–Organic Frameworks (SMOFs). Crystal Growth and Design, 2014, 14, 4019-4029.	1.4	58
16	Open-Framework Copper Adeninate Compounds with Three-Dimensional Microchannels Tailored by Aliphatic Monocarboxylic Acids. Inorganic Chemistry, 2011, 50, 5330-5332.	1.9	48
17	One-Dimensional Oxalato-Bridged Metal(II) Complexes with 4-Amino-1,2,4-triazole as Apical Ligand. European Journal of Inorganic Chemistry, 2005, 2005, 4280-4290.	1.0	47
18	Directing the Formation of Adenine Coordination Polymers from Tunable Copper(II)/Dicarboxylato/Adenine Paddle-Wheel Building Units. Crystal Growth and Design, 2012, 12, 3324-3334.	1.4	46

GARIKOITZ BEOBIDE

#	Article	IF	CITATIONS
19	A straightforward route to obtain zirconium based metal-organic gels. Microporous and Mesoporous Materials, 2019, 284, 128-132.	2.2	46
20	A new hydrated phase of cobalt(II) oxalate: crystal structure, thermal behavior and magnetic properties of {[Co(μ-ox)(H2O)2]·2H2O}n. Inorganica Chimica Acta, 2004, 357, 339-344.	1.2	45
21	Manganese(II) Pyrimidine-4,6-dicarboxylates: Synthetic, Structural, Magnetic, and Adsorption Insights. Inorganic Chemistry, 2008, 47, 5267-5277.	1.9	45
22	Comparing conventional and microwave-assisted heating in PET degradation mediated by imidazolium-based halometallate complexes. New Journal of Chemistry, 2019, 43, 3476-3485.	1.4	45
23	Synthetic Control to Achieve Lanthanide(III)/Pyrimidine-4,6-dicarboxylate Compounds by Preventing Oxalate Formation: Structural, Magnetic, and Luminescent Properties. Inorganic Chemistry, 2012, 51, 7875-7888.	1.9	44
24	Porous supramolecular compound based on paddle-wheel shaped copper(ii)–adenine dinuclear entities. CrystEngComm, 2011, 13, 3301.	1.3	43
25	Porous materials based on metal–nucleobase systems sustained by coordination bonds and base pairing interactions. CrystEngComm, 2015, 17, 3051-3059.	1.3	43
26	Unravelling the Growth of Supramolecular Metal–Organic Frameworks Based on Metal-Nucleobase Entities. Crystal Growth and Design, 2015, 15, 975-983.	1.4	40
27	Chemically Resistant, Shapeable, and Conducting Metalâ€Organic Gels and Aerogels Built from Dithiooxamidato Ligand. Advanced Functional Materials, 2017, 27, 1605448.	7.8	40
28	Rational design of 1-D metal–organic frameworks based on the novel pyrimidine-4,6-dicarboxylate ligand. New insights into pyrimidine through magnetic interaction. Dalton Transactions, 2007, , 2669-2680.	1.6	35
29	In Situ Time-Resolved Observation of the Development of Intracrystalline Mesoporosity in USY Zeolite. Chemistry of Materials, 2016, 28, 8971-8979.	3.2	35
30	Molecular Recognition of Adeninium Cations on Anionic Metalâ^'Oxalato Frameworks:  An Experimental and Theoretical Analysis. Inorganic Chemistry, 2007, 46, 3593-3602.	1.9	33
31	Structure-Directing Effect of Organic Cations in the Assembly of Anionic In(III)/Diazinedicarboxylate Architectures. Crystal Growth and Design, 2012, 12, 1501-1512.	1.4	32
32	Gas Adsorption Properties and Selectivity in Cull/Adeninato/Carboxylato Metal-Biomolecule Frameworks. European Journal of Inorganic Chemistry, 2012, 2012, 5921-5933.	1.0	31
33	Exploiting Synthetic Conditions to Promote Structural Diversity within the Scandium(III)/Pyrimidine-4,6-dicarboxylate System. Crystal Growth and Design, 2015, 15, 2352-2363.	1.4	31
34	Enhancing luminescence properties of lanthanide(<scp>iii</scp>)/pyrimidine-4,6-dicarboxylato system by solvent-free approach. Dalton Transactions, 2015, 44, 6972-6986.	1.6	31
35	Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs. microwave heating. RSC Advances, 2014, 4, 60409-60412.	1.7	30
36	Controlling interpenetration for tuning porosity and luminescence properties of flexible MOFs based on biphenyl-4,4â€2-dicarboxylic acid. CrystEngComm, 2016, 18, 1282-1294.	1.3	30

GARIKOITZ BEOBIDE

#	Article	IF	CITATIONS
37	Thermally Induced Interconversions of Metalâ^'Pyrimidine-4,6-dicarboxylate Polymers: A Structural, Spectroscopic, and Magnetic Study. Inorganic Chemistry, 2009, 48, 3087-3094.	1.9	27
38	Structural Diversity in a Copper(II)/Isophthalato/9-Methyladenine System. From One- to Three-Dimensional Metal-Biomolecule Frameworks. Crystal Growth and Design, 2013, 13, 3057-3067.	1.4	27
39	Molecular Recognition of Protonated Cytosine Ribbons by Metal–Oxalato Frameworks. Crystal Growth and Design, 2007, 7, 2594-2600.	1.4	26
40	[Zr ₆ O ₄ (OH) ₄ (benzene-1,4-dicarboxylato) ₆] _n : a hexagonal polymorph of UiO-66. Chemical Communications, 2019, 55, 5954-5957.	2.2	24
41	A Binuclear Copper(II) Complex Containing the Pyrazine-2,5-dicarboxylate Ligand: Study of the Magnetic Exchange through the Pyrazine Bridge. European Journal of Inorganic Chemistry, 2005, 2005, 2586-2589.	1.0	23
42	Porous M ^{II} /Pyrimidineâ€4,6â€Đicarboxylato Neutral Frameworks: Synthetic Influence on the Adsorption Capacity and Evaluation of CO ₂ â€Adsorbent Interactions. Chemistry - A European Journal, 2014, 20, 1554-1568.	1.7	22
43	Improving the performance of a poorly adsorbing porous material: template mediated addition of microporosity to a crystalline submicroporous MOF. Chemical Communications, 2012, 48, 907-909.	2.2	21
44	Alkaline-earth and aminonicotinate based coordination polymers with combined fluorescence/long-lasting phosphorescence and metal ion sensing response. Journal of Materials Chemistry C, 2019, 7, 6997-7012.	2.7	21
45	A transition metal complex containing pyrazine-2,5-dicarboxylato bridging ligands: a novel three-dimensional manganese(II) compound. Inorganic Chemistry Communication, 2003, 6, 1224-1227.	1.8	18
46	Photoluminescence Modulation in LanÂŧhanide(III)/Pyrazineâ€2,5â€dicarboxylato/Nitrato Frameworks. European Journal of Inorganic Chemistry, 2015, 2015, 4318-4328.	1.0	18
47	3D Magnetically Ordered Open Supramolecular Architectures Based on Ferrimagnetic Cu/Adenine/Hydroxide Heptameric Wheels. Inorganic Chemistry, 2016, 55, 7755-7763.	1.9	17
48	Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. IScience, 2021, 24, 102654.	1.9	17
49	Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands. Coordination Chemistry Reviews, 2017, 352, 83-107.	9.5	16
50	((<i>R</i>)-(â^')-3-Hydroxyquinuclidium)[FeCl ₄]; a plastic hybrid compound with chirality, ferroelectricity and long range magnetic ordering. Journal of Materials Chemistry C, 2021, 9, 4453-4465.	2.7	16
51	Copper(II) invigorated EHU-30 for continuous electroreduction of CO2 into value-added chemicals. Scientific Reports, 2022, 12, .	1.6	16
52	Low-Nuclearity MnII Complexes Based on Pyrimidine-4,6-dicarboxylato Bridging Ligand: Crystal Structure, Ion Exchange and Magnetic Properties. European Journal of Inorganic Chemistry, 2011, 2011, 68-77.	1.0	15
53	Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material. Polymers, 2016, 8, 16.	2.0	14
54	Towards multicomponent MOFs via solvent-free synthesis under conventional oven and microwave assisted heating. Inorganic Chemistry Frontiers, 2015, 2, 425-433.	3.0	13

#	Article	IF	CITATIONS
55	Porous Supramolecular Architectures Based on π-Stacking Interactions between Discrete Metal-Adenine Entities and the Non-DNA Theobromine/Caffeine Nucleobases. Crystal Growth and Design, 2018, 18, 3465-3476.	1.4	13
56	Magnetic Structure, Single-Crystal to Single-Crystal Transition, and Thermal Expansion Study of the (Edimim)[FeCl ₄] Halometalate Compound. Inorganic Chemistry, 2018, 57, 1787-1795.	1.9	13
57	Unveiling the Role of Tetrabutylammonium and Cesium Bulky Cations in Enhancing Naâ€O ₂ Battery Performance. Advanced Energy Materials, 2022, 12, .	10.2	13
58	Photoluminescence Tuning and Water Detection of Yttrium Diazinedicarboxylate Materials through Lanthanide Doping. European Journal of Inorganic Chemistry, 2015, 2015, 2650-2663.	1.0	12
59	Thermallyâ€Triggered Crystal Dynamics and Permanent Porosity in the First Heptatungstateâ€Metalorganic Threeâ€Dimensional Hybrid Framework. Chemistry - A European Journal, 2017, 23, 14962-14974.	1.7	11
60	Crystal structure, magneto-structural correlation, thermal and electrical studies of an imidazolium halometallate molten salt: (trimim)[FeCl4]. RSC Advances, 2020, 10, 11200-11209.	1.7	11
61	Ferromagnetic supramolecular metal-organic frameworks for active capture and magnetic sensing of emerging drug pollutants. Cell Reports Physical Science, 2021, 2, 100421.	2.8	9
62	Adenine nucleobase directed supramolecular architectures based on ferrimagnetic heptanuclear copper(II) entities and benzenecarboxylate anions. Journal of Inorganic Biochemistry, 2020, 202, 110865.	1.5	8
63	Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorganic Chemistry Frontiers, 2021, 8, 4767-4779.	3.0	8
64	Merging the chemistry of metal–organic and polyoxometalate clusters to form enhanced photocatalytic materials. Inorganic Chemistry Frontiers, 2022, 9, 935-940.	3.0	8
65	trans-Bis[4-amino-3,5-bis(2-pyridyl)-4H-1,2,4-triazole-Î⁰2N1,N5]bis(nitrato-κO)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m720-m722.	0.2	7
66	Dipotassium aquabis(pyrazine-2,3-dicarboxylato-κ2N,O)cuprate(II) hexahydrate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m800-m802.	0.2	6
67	Zinc Thiocarboxylate Complexes as Precursors for Zinc Sulfide Nanoparticles under Aerobic Conditions. European Journal of Inorganic Chemistry, 2013, 2013, 5592-5602.	1.0	6
68	Supramolecular architectures based on p-cymene/ruthenium complexes functionalized with nucleobases. CrystEngComm, 2017, 19, 6039-6048.	1.3	6
69	Providing evidence for the requirements to achieve supramolecular materials based on metal–nucleobase entities. CrystEngComm, 2018, 20, 2528-2539.	1.3	6
70	Temperature evolution of (quinuclidinium)[FeCl ₄]: a plastic/polar magnetic hybrid compound with a giant dielectric constant. Journal of Materials Chemistry C, 2020, 8, 11389-11398.	2.7	6
71	Supramolecular Architectures Based on Metal-Cytosine Systems. European Journal of Inorganic Chemistry, 2017, 2017, 1333-1340.	1.0	5
72	Invigorating polyurethane foams with phase change materials supported in inorganic containers. Polymer Composites, 2018, 39, 1420-1432.	2.3	5

GARIKOITZ BEOBIDE

#	Article	IF	CITATIONS
73	Theophylline alkaloid as glue of paddle-wheel copper(II)-adenine entities to afford a rhomboid chain. Inorganica Chimica Acta, 2019, 484, 437-442.	1.2	5
74	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14088-14096.	1.6	5
75	Single-Crystal-to-Single-Crystal Cluster Transformation in a Microporous Molybdoarsenate(V)-Metalorganic Framework. Inorganic Chemistry, 2021, 60, 14913-14923.	1.9	5
76	Reversible dehydration process in a novel three-dimensional covalent network based on pyrimidine-4,6-dionato bridging ligand. Inorganica Chimica Acta, 2006, 359, 2583-2588.	1.2	4
77	Condensed heterometallic bidimensional mixed valence CuI/CuII/NiII cyanidometallate. Dalton Transactions, 2009, , 9722.	1.6	4
78	Supramolecular extended systems based on discrete paddle-wheel shaped metal–adeninate entities. Inorganica Chimica Acta, 2016, 452, 222-228.	1.2	4
79	The Chemistry of Zirconium/Carboxylate Clustering Process: Acidic Conditions to Promote Carboxylate-Unsaturated Octahedral Hexamers and Pentanuclear Species. Inorganic Chemistry, 2022, 61, 4842-4851.	1.9	4
80	Metal–Thiobenzoato Complexes: Synthesis, Structure, and Processing as Carbonâ€ S upported Nanoparticles. European Journal of Inorganic Chemistry, 2018, 2018, 1371-1382.	1.0	3
81	Bis(2,2′-bipyridine-l̂º2N,N′)(nitrato-l̂ºO)copper(II) hexafluorophosphate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1353-m1355.	0.2	2
82	Bis(1,10-phenanthroline-κ ² <i>N</i> , <i>N</i> ′)bis(thiocyanato-κ <i>N</i>)cadmium. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m704-m705.	0.2	2
83	Metal removal from the secondary building unit of bio-MOF-1 by adenine N6-alkylation while retaining the overall 3D porous topology. CrystEngComm, 2020, 22, 4201-4205.	1.3	2
84	Slot-Die Process of a Sol–Gel Photocatalytic Porous Coating for Large-Area Fabrication of Functional Architectural Glass. Catalysts, 2021, 11, 711.	1.6	2
85	Crystal and magnetic structure of the (trimim)[FeBr4] molten salt: A temperature dependence study. Journal of Molecular Liquids, 2021, 331, 115716.	2.3	1
86	The crystal structure of a new polymorph of hexaaquanickel(II) bis(6-oxo-1,6-dihydropyridine-3-carboxylate). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m238-m239.	0.2	1
87	Photoluminescence Modulation in LanÂŧhanide(III)/Pyrazine-2,5-dicarboxylato/Nitrato Frameworks. European Journal of Inorganic Chemistry, 2015, 2015, 4282-4282.	1.0	0
88	Supramolecular architectures of metal-oxalato coordination polymers bearing N-tethered adenine nucleobases. Polyhedron, 2019, 171, 53-64.	1.0	0
89	Incommensurate crystal structure, thermal expansion study and magnetic properties of (dimethylimidazolium)2[Fe2Cl6(lᠯ4-O)]. JPhys Materials, 2019, 3, 015002.	1.8	0
90	Base nitrogenatuak konposatu metal-organiko porotsuak eraikitzeko baliabide: zenbait adibide. Ekaia (journal), 2017, , 113-124.	0.0	0

#	Article	IF	CITATIONS
91	Innovative Microstructural Transformation upon CO2 Supercritical Conditions on Metal-Nucleobase Aerogel and Its Use as Effective Filler for HPLC Biomolecules Separation. Nanomaterials, 2022, 12, 675.	1.9	0