Zhijun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5392184/publications.pdf

Version: 2024-02-01

69	8 746	117453	98622
papers	8,746 citations	h-index	g-index
69	69	69	8313
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	6.6	1,220
2	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nature Catalysis, 2019, 2, 304-313.	16.1	757
3	Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nature Catalysis, 2018, 1, 781-786.	16.1	746
4	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	6.6	558
5	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	5.8	544
6	Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy and Environmental Science, 2018 , 11 , 3375 - 3379 .	15.6	528
7	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	7.2	310
8	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	5.5	297
9	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	6.6	285
10	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	11.7	277
11	Fabrication of Singleâ€Atom Catalysts with Precise Structure and High Metal Loading. Advanced Materials, 2018, 30, e1801649.	11.1	247
12	Recent advances in the precise control of isolated single-site catalysts by chemical methods. National Science Review, 2018, 5, 673-689.	4.6	244
13	Single Ru Atoms Stabilized by Hybrid Amorphous/Crystalline FeCoNi Layered Double Hydroxide for Ultraefficient Oxygen Evolution. Advanced Energy Materials, 2021, 11, .	10.2	223
14	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie - International Edition, 2018, 57, 9495-9500.	7.2	205
15	Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chemical Communications, 2019, 55, 2285-2288.	2.2	205
16	Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nature Communications, 2016, 7, 12654.	5.8	171
17	3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chemical Engineering Journal, 2020, 380, 122447.	6.6	127
18	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	11.1	114

#	Article	IF	CITATIONS
19	Engineering the Electronic Structure of Submonolayer Pt on Intermetallic Pd sub 3 / sub Pb via Charge Transfer Boosts the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 19964-19968.	6.6	99
20	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 3435-3438.	7.2	98
21	Composite coatings on a Mg–Li alloy prepared by combined plasma electrolytic oxidation and sol–gel techniques. Corrosion Science, 2012, 63, 358-366.	3.0	79
22	Low-Temperature Synthesis of Single Palladium Atoms Supported on Defective Hexagonal Boron Nitride Nanosheet for Chemoselective Hydrogenation of Cinnamaldehyde. ACS Nano, 2021, 15, 10175-10184.	7.3	77
23	Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nature Communications, 2020, 11, 335.	5.8	69
24	Mesoporous Pd@Ru Core–Shell Nanorods for Hydrogen Evolution Reaction in Alkaline Solution. ACS Applied Materials & Diterfaces, 2018, 10, 34147-34152.	4.0	64
25	Effect of phosphate additive on the morphology and anti-corrosion performance of plasma electrolytic oxidation coatings on magnesium―lithium alloy. Corrosion Science, 2019, 157, 295-304.	3.0	61
26	One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Applied Catalysis B: Environmental, 2021, 298, 120535.	10.8	61
27	In Situ Topotactic Transformation of an Interstitial Alloy for CO Electroreduction. Advanced Materials, 2020, 32, e2002382.	11.1	56
28	Ceramic Coatings of LA141 Alloy Formed by Plasma Electrolytic Oxidation for Corrosion Protection. ACS Applied Materials & Eamp; Interfaces, 2011, 3, 3682-3690.	4.0	54
29	Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg–Li alloy. Journal of Alloys and Compounds, 2012, 541, 380-391.	2.8	48
30	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	5.2	47
31	Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Research, 2021, 14, 4347-4355.	5.8	43
32	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	1.6	41
33	Highly sensitive ethanol gas sensor based on ultrathin nanosheets assembled Bi2WO6 with composite phase. Science Bulletin, 2019, 64, 595-602.	4.3	40
34	Engineering the Atomic Layer of RuO ₂ on PdO Nanosheets Boosts Oxygen Evolution Catalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42298-42304.	4.0	38
35	Carboxymethylated Dextran-Modified <i>N</i> Heterocyclic Carbene Self-Assembled Monolayers on Gold for Use in Surface Plasmon Resonance Biosensing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39223-39234.	4.0	36
36	N-Heterocyclic Carbene Self-Assembled Monolayers on Gold as Surface Plasmon Resonance Biosensors. Langmuir, 2017, 33, 13936-13944.	1.6	34

#	Article	IF	Citations
37	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	2.2	34
38	Selective Hydrogenation on a Highly Active Single-Atom Catalyst of Palladium Dispersed on Ceria Nanorods by Defect Engineering. ACS Applied Materials & Engineering. Engineering. ACS Applied Materials & Engineering. Engi	4.0	34
39	Single palladium atoms stabilized by \hat{l}^2 -FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano Research, 2022, 15, 3114-3121.	5.8	34
40	Composite coatings prepared by combined plasma electrolytic oxidation and chemical conversion routes on magnesium-lithium alloy. Journal of Alloys and Compounds, 2017, 706, 419-429.	2.8	32
41	Strong electronic interaction of indium oxide with palladium single atoms induced by quenching toward enhanced hydrogenation of nitrobenzene. Applied Catalysis B: Environmental, 2022, 313, 121462.	10.8	32
42	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie, 2018, 130, 9639-9644.	1.6	31
43	Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54146-54154.	4.0	31
44	Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2530-2537.	4.0	31
45	Characteristics of high-performance anti-corrosion/anti-wear ceramic coatings on magnesiumâ€ʻlithium alloy by plasma electrolytic oxidation surface engineering. Surface and Coatings Technology, 2019, 375, 600-607.	2.2	29
46	Preparation and characterization of superhydrophobic composite coatings on a magnesium–lithium alloy. RSC Advances, 2016, 6, 90587-90596.	1.7	28
47	Self-Assembled N-Heterocyclic Carbene-Based Carboxymethylated Dextran Monolayers on Gold as a Tunable Platform for Designing Affinity-Capture Biosensor Surfaces. ACS Applied Materials & Designing Affinity & Designing Affinity & Designing Affinity & Designing Affinity & D	4.0	27
48	Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction. Journal of Energy Chemistry, 2022, 73, 469-477.	7.1	26
49	Surface engineering of mesoporous anatase titanium dioxide nanotubes for rapid spatial charge separation on horizontal-vertical dimensions and efficient solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 586, 75-83.	5.0	25
50	Ultrathin Palladium Nanomesh for Electrocatalysis. Angewandte Chemie, 2018, 130, 3493-3496.	1.6	24
51	A single palladium site catalyst as a bridge for converting homogeneous to heterogeneous in dimerization of terminal aryl acetylenes. Materials Chemistry Frontiers, 2018, 2, 1317-1322.	3.2	23
52	Facile Synthesis of Single Iron Atoms over MoS ₂ Nanosheets via Spontaneous Reduction for Highly Efficient Selective Oxidation of Alcohols. Small, 2022, 18, e2201092.	5.2	23
53	Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry - A European Journal, 2019, 25, 5113-5127.	1.7	20
54	Ultrahigh-flux (>190,000 L·mâ^'2hâ^'1) separation of oil and water by a robust and durable Cu(OH)2 nanoneedles mesh with inverse wettability. Journal of Colloid and Interface Science, 2019, 555, 569-582.	5.0	18

#	Article	IF	CITATIONS
55	Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene. Journal of Catalysis, 2022, 405, 499-507.	3.1	16
56	Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols. Nano Research, 2022, 15, 4023-4031.	5.8	16
57	Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Research, 2022, 15, 1338-1346.	5.8	15
58	Atomically Defined Undercoordinated Copper Active Sites over Nitrogenâ€Doped Carbon for Aerobic Oxidation of Alcohols. Small, 2022, 18, e2106614.	5.2	15
59	Creating high-performance bi-functional composite coatings on magnesiumâ^8lithium alloy through electrochemical surface engineering with highly enhanced corrosion and wear protection. Journal of Alloys and Compounds, 2020, 818, 153341.	2.8	13
60	Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation. Nano Research, 2022, 15, 5912-5921.	5.8	13
61	Atomic level engineering of noble metal nanocrystals for energy conversion catalysis. Journal of Energy Chemistry, 2021, 63, 604-624.	7.1	12
62	Isolated Palladium Atoms Dispersed on Silicoaluminophosphate-31 (SAPO-31) for the Semihydrogenation of Alkynes. ACS Applied Nano Materials, 2021, 4, 861-868.	2.4	11
63	Pt ₉ Ni Wavelike Nanowires with High Activity for Oxygen Reduction Reactions. Chemistry - A European Journal, 2018, 24, 14636-14638.	1.7	9
64	Photoinduction of palladium single atoms supported on defect-containing \hat{I}^3 -AlOOH nanoleaf for efficient trans-stilbene epoxidation. Chemical Engineering Journal, 2022, 429, 132149.	6.6	8
65	Electrochemical deposition of nano-structured ZnO on the nanocrystalline TiO2 film and its characterization. Science China Chemistry, 2010, 53, 1732-1736.	4.2	6
66	Coordination and reduction in polyol-mediated solvothermal synthesis of nickel-based materials with controllable morphology and magnetic and electrochemical properties. Research on Chemical Intermediates, 2017, 43, 6395-6406.	1.3	5
67	Singleâ€Atom Catalysts: Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970316.	11.1	1
68	Metadata-based automated IoT device management system. , 2021, , .		1
69	Frontispiece: Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry - A European Journal, 2019, 25, .	1.7	0