Jagmandeep S Dhillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5391934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active optical sensor measurements and weather variables for predicting winter wheat yield. Agronomy Journal, 2021, 113, 2742-2751.	1.8	6
2	Ground versus aerial canopy reflectance of corn: Redâ€edge and nonâ€red edge vegetation indices. Agronomy Journal, 2021, 113, 2782-2797.	1.8	9
3	Corn response to row spacing and plant population in the Midâ€South United States. Agronomy Journal, 2021, 113, 4132.	1.8	3
4	Changes in Check Plot Yields over Time in Three Long-Term Winter Wheat Experiments. Communications in Soil Science and Plant Analysis, 2020, 51, 297-306.	1.4	4
5	Variability in Winter Wheat (<i>Triticum aestivum</i> L.) Grain Yield Response to Nitrogen Fertilization in Long-Term Experiments. Communications in Soil Science and Plant Analysis, 2020, 51, 403-412.	1.4	9
6	Predicting in-season maize (Zea mays L.) yield potential using crop sensors and climatological data. Scientific Reports, 2020, 10, 11479.	3.3	8
7	Effect of topdress nitrogen rates applied based on growing degree days on winter wheat grain yield. Agronomy Journal, 2020, 112, 3114-3128.	1.8	3
8	Effect of Spacing, Planting Methods and Nitrogen on Maize Grain Yield. Communications in Soil Science and Plant Analysis, 2020, 51, 1582-1589.	1.4	3
9	Value of composite Normalized Difference Vegetative Index and growing degree days data in Oklahoma, 1999 to 2018. , 2020, 3, e20013.		2
10	Effect of winter wheat cultivar on grain yield trend under different nitrogen management. , 2020, 3, e20017.		5
11	Applied use of growing degree days to refine optimum times for nitrogen stress sensing in winter wheat. Agronomy Journal, 2020, 112, 537-549.	1.8	13
12	Nitrogen management impact on winter wheat grain yield and estimated plant nitrogen loss. Agronomy Journal, 2020, 112, 564-577.	1.8	25
13	Wheat grain yield and nitrogen uptake as influenced by fertilizer placement depth. , 2020, 3, e20025.		7
14	Maize (<i>Zea mays</i> L.) Grain Yield Response to Methods of Nitrogen Fertilization. Communications in Soil Science and Plant Analysis, 2019, 50, 2694-2700.	1.4	6
15	World Sulfur Use Efficiency for Cereal Crops. Agronomy Journal, 2019, 111, 2485-2492.	1.8	39
16	Influence of No-Tillage on Soil Organic Carbon, Total Soil Nitrogen, and Winter Wheat (Triticum) Tj ETQq0 0 0 rg	BT/Overlo	ck 10 Tf 50 1

17	Influence of Applied Cattle Manure on Winter Wheat (Triticum aestivum L.) Grain Yield, Soil pH and Soil Organic Carbon. Communications in Soil Science and Plant Analysis, 2019, 50, 2056-2064.	1.4	5
18	No-tillage Improves Winter Wheat (Triticum Aestivum L.) Grain Nitrogen Use Efficiency. Communications in Soil Science and Plant Analysis, 2019, 50, 2411-2419.	1.4	6

#	Article	IF	CITATIONS
19	Inâ€5eason Application of Nitrogen and Sulfur in Winter Wheat. , 2019, 2, 1-8.		8
20	Economics of the Greenseeder Hand Planter. , 2019, 2, 1-7.		2
21	Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. Field Crops Research, 2019, 236, 42-57.	5.1	92
22	World Potassium Use Efficiency in Cereal Crops. Agronomy Journal, 2019, 111, 889-896.	1.8	76
23	Unpredictable Nature of Environment on Nitrogen Supply and Demand. Agronomy Journal, 2019, 111, 2786-2791.	1.8	28
24	Soil Organic Carbon, Total Nitrogen, and Soil pH, in a Long-Term Continuous Winter Wheat (<i>Triticum Aestivum</i> L.) Experiment. Communications in Soil Science and Plant Analysis, 2018, 49, 803-813.	1.4	11
25	Hand Planter for the Developing World: Factor Testing and Refinement. , 2018, 1, 1-6.		4
26	Relationship between mean square errors and wheat grain yields in long-term experiments. Journal of Plant Nutrition, 2017, 40, 1243-1249.	1.9	4
27	World Phosphorus Use Efficiency in Cereal Crops. Agronomy Journal, 2017, 109, 1670-1677.	1.8	147
28	Evaluation of drum cavity size and planter tip on singulation and plant emergence in maize (<i>Zea) Tj ETQq0 0</i>	O rgBT /Ov	erlgck 10 Tf 5

Can Yield Goals Be Predicted?. Agronomy Journal, 2017, 109, 2389-2395.