
Eva De Lago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5391863/publications.pdf Version: 2024-02-01

EVA DE LACO

#	Article	lF	CITATIONS
1	TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy. Journal of Medicinal Chemistry, 2022, 65, 1585-1607.	2.9	20
2	Targeting nuclear protein TDP-43 by cell division cycle kinase 7 inhibitors: A new therapeutic approach for amyotrophic lateral sclerosis. European Journal of Medicinal Chemistry, 2021, 210, 112968.	2.6	26
3	Recent advances in the pathogenesis and therapeutics of amyotrophic lateral sclerosis. British Journal of Pharmacology, 2021, 178, 1253-1256.	2.7	3
4	Retinal Ganglion Cell Loss and Microglial Activation in a SOD1C93A Mouse Model of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 1663.	1.8	8
5	Targeting the CB ₂ receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. British Journal of Pharmacology, 2021, 178, 1373-1387.	2.7	13
6	Inactivation of the CB ₂ receptor accelerated the neuropathological deterioration in TDPâ€43 transgenic mice, a model of amyotrophic lateral sclerosis. Brain Pathology, 2021, 31, e12972.	2.1	13
7	Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3β as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 8975.	1.8	24
8	BiP Heterozigosity Aggravates Pathological Deterioration in Experimental Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 12533.	1.8	5
9	Preclinical Investigation in Neuroprotective Effects of the GPR55 Ligand VCE-006.1 in Experimental Models of Parkinson's Disease and Amyotrophic Lateral Sclerosis. Molecules, 2021, 26, 7643.	1.7	10
10	Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1δkinase inhibitor treatment. Scientific Reports, 2020, 10, 4449.	1.6	44
11	Pharmacokinetics of Sativex® in Dogs: Towards a Potential Cannabinoid-Based Therapy for Canine Disorders. Biomolecules, 2020, 10, 279.	1.8	24
12	Targeting glial cannabinoid <scp>CB₂</scp> receptors to delay the progression of the pathological phenotype in <scp>TDPâ€43</scp> (<scp>A315T</scp>) transgenic mice, a model of amyotrophic lateral sclerosis. British Journal of Pharmacology, 2019, 176, 1585-1600.	2.7	46
13	Analysis of endocannabinoid receptors and enzymes in the post-mortem motor cortex and spinal cord of amyotrophic lateral sclerosis patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 377-386.	1.1	20
14	Neuroprotective effects of the cannabigerol quinone derivative VCE-003.2 in SOD1G93A transgenic mice, an experimental model of amyotrophic lateral sclerosis. Biochemical Pharmacology, 2018, 157, 217-226.	2.0	45
15	Up-regulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis. DMM Disease Models and Mechanisms, 2017, 10, 551-558.	1.2	46
16	A <scp>S</scp> ativex [®] â€like combination of phytocannabinoids as a diseaseâ€modifying therapy in a viral model of multiple sclerosis. British Journal of Pharmacology, 2015, 172, 3579-3595.	2.7	58
17	Endocannabinoids and amyotrophic lateral sclerosis. , 2015, , 99-123.		9
18	The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ-tetrahydrocannabinol acting through CB1 receptors. Multiple Sclerosis and Related Disorders, 2015, 4, 505-511.	0.9	30

Eva De Lago

#	Article	IF	CITATIONS
19	Changes in the endocannabinoid signaling system in CNS structures of TDP-43 transgenic mice: relevance for a neuroprotective therapy in TDP-43-related disorders. Journal of Neurolmmune Pharmacology, 2015, 10, 233-244.	2.1	44
20	Changes in Endocannabinoid Receptors and Enzymes in the Spinal Cord of <scp>SOD</scp> 1 ^{G93A} Transgenic Mice and Evaluation of a Sativex [®] â€like Combination of Phytocannabinoids: Interest for Future Therapies in Amyotrophic Lateral Sclerosis. CNS Neuroscience and Therapeutics, 2014, 20, 809-815.	1.9	54
21	Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology, 2012, 62, 2299-2308.	2.0	70
22	Identification of receptors and enzymes for endocannabinoids in NSC-34 cells: Relevance for in vitro studies with cannabinoids in motor neuron diseases. Neuroscience Letters, 2012, 508, 67-72.	1.0	13
23	Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain. European Journal of Neuroscience, 2010, 31, 1414-1422.	1.2	27
24	The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opinion on Therapeutic Targets, 2010, 14, 387-404.	1.5	78
25	Cannabinoids, multiple sclerosis and neuroprotection. Expert Review of Clinical Pharmacology, 2009, 2, 645-660.	1.3	13
26	Cannabinoids and Neuroprotection in Motor-Related Disorders. CNS and Neurological Disorders - Drug Targets, 2007, 6, 377-387.	0.8	43
27	Neurochemical effects of the endocannabinoid uptake inhibitor UCM707 in various rat brain regions. Life Sciences, 2007, 80, 979-988.	2.0	9
28	Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: Importance of antioxidant and cannabinoid receptor-independent properties. Brain Research, 2007, 1134, 162-170.	1.1	258
29	Cannabinoids and Neuroprotection in Basal Ganglia Disorders. Molecular Neurobiology, 2007, 36, 82-91.	1.9	79
30	UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntington's disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. European Neuropsychopharmacology, 2006, 16, 7-18.	0.3	70
31	Effects of inhibition of fatty acid amide hydrolase vs. the anandamide membrane transporter on TRPV1-mediated calcium responses in adult DRG neurons; the role of CB1receptors. European Journal of Neuroscience, 2006, 24, 3489-3495.	1.2	18
32	Acyl-based anandamide uptake inhibitors cause rapid toxicity to C6 glioma cells at pharmacologically relevant concentrations. Journal of Neurochemistry, 2006, 99, 677-688.	2.1	27
33	Effect of repeated systemic administration of selective inhibitors of endocannabinoid inactivation on rat brain endocannabinoid levels. Biochemical Pharmacology, 2005, 70, 446-452.	2.0	81
34	Arvanil, a hybrid endocannabinoid and vanilloid compound, behaves as an antihyperkinetic agent in a rat model of Huntington's disease. Brain Research, 2005, 1050, 210-216.	1.1	37
35	Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiology of Disease, 2005, 20, 207-217.	2.1	131
36	In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. European Journal of Pharmacology, 2004, 484, 249-257.	1.7	92

Eva De Lago

#	Article	IF	CITATIONS
37	Involvement of vanilloid-like receptors in the effects of anandamide on motor behavior and nigrostriatal dopaminergic activity: in vivo and in vitro evidence. Brain Research, 2004, 1007, 152-159.	1.1	91
38	Design, synthesis and biological evaluation of new endocannabinoid transporter inhibitors. European Journal of Medicinal Chemistry, 2003, 38, 403-412.	2.6	42
39	Design, Synthesis, and Biological Evaluation of New Inhibitors of the Endocannabinoid Uptake: Comparison with Effects on Fatty Acid Amidohydrolase. Journal of Medicinal Chemistry, 2003, 46, 1512-1522.	2.9	83
40	UCM707, a potent and selective inhibitor of endocannabinoid uptake, potentiates hypokinetic and antinociceptive effects of anandamide. European Journal of Pharmacology, 2002, 449, 99-103.	1.7	63
41	STR data for nine Y-chromosomal loci. Forensic Science International, 2002, 127, 142-144.	1.3	4