
Robert Parks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5391556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	13.7	699
2	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	6.0	318
3	A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 2020, 53, 724-732.e7.	6.6	267
4	D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports, 2021, 34, 108630.	2.9	263
5	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
6	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
7	Diversion of HIV-1 vaccine–induced immunity by gp41-microbiota cross-reactive antibodies. Science, 2015, 349, aab1253.	6.0	191
8	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	6.0	144
9	Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nature Communications, 2017, 8, 15711.	5.8	137
10	Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies. Science Immunology, 2016, 1, aag0851.	5.6	120
11	HIV-1 Envelope gp41 Antibodies Can Originate from Terminal lleum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host and Microbe, 2014, 16, 215-226.	5.1	105
12	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	2.9	97
13	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	5.8	93
14	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	5.8	86
15	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	5.8	81
16	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	5.8	76
17	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	2.9	69
18	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	5.1	66

ROBERT PARKS

#	Article	IF	CITATIONS
19	Antibody Light-Chain-Restricted Recognition of the Site of Immune Pressure in the RV144 HIV-1 Vaccine Trial Is Phylogenetically Conserved. Immunity, 2014, 41, 909-918.	6.6	65
20	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	1.5	62
21	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
22	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	2.9	46
23	Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.	2.9	45
24	HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. Journal of Virology, 2018, 92, .	1.5	45
25	Developmental Pathway of the MPER-Directed HIV-1-Neutralizing Antibody 10E8. PLoS ONE, 2016, 11, e0157409.	1.1	44
26	Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements. Nature Communications, 2020, 11, 520.	5.8	42
27	Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Molecular Therapy, 2016, 24, 2021-2032.	3.7	41
28	Comparison of Immunogenicity in Rhesus Macaques of Transmitted-Founder, HIV-1 Group M Consensus, and Trivalent Mosaic Envelope Vaccines Formulated as a DNA Prime, NYVAC, and Envelope Protein Boost. Journal of Virology, 2015, 89, 6462-6480.	1.5	40
29	Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.	2.7	34
30	Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies. Nature Communications, 2019, 10, 654.	5.8	34
31	Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. PLoS Biology, 2019, 17, e3000328.	2.6	33
32	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	5.8	27
33	Priming with a Potent HIV-1 DNA Vaccine Frames the Quality of Immune Responses prior to a Poxvirus and Protein Boost. Journal of Virology, 2019, 93, .	1.5	25
34	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	2.9	23
35	The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nature Immunology, 2021, 22, 1294-1305.	7.0	20
36	HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence. Immunogenetics, 2016, 68, 145-155.	1.2	18

ROBERT PARKS

#	Article	IF	CITATIONS
37	Envelope-specific B-cell populations in African green monkeys chronically infected with simian immunodeficiency virus. Nature Communications, 2016, 7, 12131.	5.8	14
38	Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Communications Biology, 2022, 5, 271.	2.0	14
39	Eliminating antibody polyreactivity through addition of <i>N</i> â€linked glycosylation. Protein Science, 2015, 24, 1019-1030.	3.1	11
40	Immunogenicity of NYVAC Prime-Protein Boost Human Immunodeficiency Virus Type 1 Envelope Vaccination and Simian-Human Immunodeficiency Virus Challenge of Nonhuman Primates. Journal of Virology, 2018, 92, .	1.5	10
41	Novel Monoclonal Antibodies for Studies of Human and Rhesus Macaque Secretory Component and Human J-Chain. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 217-226.	0.8	9
42	Immunodominance of Antibody Recognition of the HIV Envelope V2 Region in Ig-Humanized Mice. Journal of Immunology, 2017, 198, 1047-1055.	0.4	7
43	Antigenicity and Immunogenicity of HIV-1 Envelope Trimers Complexed to a Small-Molecule Viral Entry Inhibitor. Journal of Virology, 2020, 94, .	1.5	5
44	Parallel Induction of CH505 B Cell Ontogeny-Guided Neutralizing Antibodies and tHIVconsvX Conserved Mosaic-Specific T Cells against HIV-1. Molecular Therapy - Methods and Clinical Development, 2019, 14, 148-160.	1.8	4
45	Induction of Antibodies with Long Variable Heavy Third Complementarity Determining Regions by Repetitive Boosting with AIDSVAX® B/E in RV144 Vaccinees. AIDS Research and Human Retroviruses, 2014, 30, A36-A36.	0.5	1
46	-Deficient Mice Exhibit Cytokine-Related Transcriptomic Signatures. ImmunoHorizons, 2020, 4, 713-728.	0.8	0