Francesco Novelli

List of Publications by Year in descending order

[^0]

Phosphoinositide Conversion Inactivates Râ€RAS and Drives Metastases in Breast Cancer. Advanced
Science, 2022, 9, e2103249.

2 Discovery of Targets for Cancer Immunoprevention. Methods in Molecular Biology, 2022, 2435, 19-33.
$0.9 \quad 1$

Long-Term Effects of Alemtuzumab on CD4+ Lymphocytes in Multiple Sclerosis Patients: A 72-Month Follow-Up. Frontiers in Immunology, 2022, 13, 818325.

Docking Protein p130Cas Regulates Acinar to Ductal Metaplasia During Pancreatic Adenocarcinoma Development and Pancreatitis. Gastroenterology, 2022, 162, 1242-1255.e11.

Exploring chitosan-shelled nanobubbles to improve HER2â€\%o+â€\%oimmunotherapy via dendritic cell targeting.
Drug Delivery and Translational Research, 2022, 12, 2007-2018.

IL17A critically shapes the transcriptional program of fibroblasts in pancreatic cancer and switches
6 on their protumorigenic functions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .

7 The Clycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer.
Molecules, 2021, 26, 1642.

IL17A Depletion Affects the Metabolism of Macrophages Treated with Gemcitabine. Antioxidants, 2021, 10, 422.

9 Low Levels of Urinary PSA Better Identify Prostate Cancer Patients. Cancers, 2021, 13, 3570.
8.6
11 In pancreatic cancer, chemotherapy increases antitumor responses to tumor-associated antigens and potentiates DNA vaccination. , 2020, 8, e001071.

Computational modeling of the immune response in multiple sclerosis using epimod framework. BMC
12 Bioinformatics, 2020, 21, 550.
2.6

9

Metabolome of Pancreatic Juice Delineates Distinct Clinical Profiles of Pancreatic Cancer and Reveals
a Link between Clucose Metabolism and PD-1 + Cells. Cancer Immunology Research, 2020, 8, 493-505.

Proteomics-Based Evidence for a Pro-Oncogenic Role of ESRP1 in Human Colorectal Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 575.

Immune-Complexome Analysis Identifies Immunoglobulin-Bound Biomarkers That Predict the Response to Chemotherapy of Pancreatic Cancer Patients. Cancers, 2020, 12, 746.
3.7

6

16 The dark side of immunotherapy: pancreatic cancer. , 2020, 3, 491-520.

Integrative Analysis of Novel Metabolic Subtypes in Pancreatic Cancer Fosters New Prognostic
Biomarkers. Frontiers in Oncology, 2019, 9, 115.
2.8

32

Stromal protein 1 íig-h3 reprogrammes tumour microenvironment in pancreatic cancer. Gut, 2019, 68,
693-707.

The advanced glycation endâ€product $\langle\mathrm{i}\rangle \mathrm{N}\langle\mid \mathrm{i}\rangle\langle\mathrm{sup}\rangle \ddot{\mathrm{l}} \mu</$ sup \rangle â $€$ earboxymethyllysine promotes progression
20 of pancreatic cancer: implications for diabetesâ€ $\begin{aligned} & \text { sssociated risk and its prevention. Journal of }\end{aligned}$
Pathology, 2018, 245, 197-208.

21	Beta-2-glycoprotein-1 and alpha-1-antitrypsin as urinary markers of renal cancer in von Hippelâ€"Lindau patients. Biomarkers, 2018, 23, 123-130.	1.9	12
22	Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Oncolmmunology, 2018, 7, e1393596.	4.6	58
23	FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis. Oncogene, 2018, 37, 697-709.	5.9	49

24 Soluble stromaâ€ elated biomarkers of pancreaticÂcancer. EMBO Molecular Medicine, 2018, 10,. 56
25 Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners. Cancers, 2018, 10, 51. $3.7 \quad 21$
Pregnancy Epigenetic Signature in T Helper 17 and T Regulatory Cells in Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 3075.

Alpha-enolase (ENO1) controls alpha v/beta 3 integrin expression and regulates pancreatic canceradhesion, invasion, and metastasis. Journal of Hematology and Oncology, 2017, 10, 16.
31 Alpha-Enolase i ENO1 i a potential target in novel immunotherapies. Frontiers in Bioscience - Landmark, 2017, 22, 944-959.

Overcoming the lack of kinetic information in biochemical reactions networks. Performance Evaluation Review, 2017, 44, 91-102.

Protein disulfide isomerase A3â€"specific Th1 effector cells infiltrate colon cancer tissue of patients
38 with circulating antiấ "protein disulfide isomerase A3 autoantibodies. Translational Research, 2016, 171

Intra-tumoral IFN-î3-producing Th22 cells correlate with TNM staging and the worst outcomes in pancreatic cancer. Clinical Science, 2016, 130, 247-258.

```
Peripheral ENO1-specific T cells mirror the intratumoral immune response and their presence is a
43 potential prognostic factor for pancreatic adenocarcinoma. International Journal of Oncology, 2016,
49, 393-401.
```

Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma.
Oncolmmunology, 2016, 5, e1085147.
4.6

169
45 Alemtuzumab long-term immunologic effect. Neurology: Neuroimmunology and NeuroInflammation,
2016, 3, e194.
6.0

65
 restraining effector T cell response. Oncolmmunology, 2016, 5, el112940.
Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative
phosphorylation and induces growth arrest. Oncotarget, 2016, 7,5598-5612.

48 ATP-Binding-Cassette A1 Regulates Extracellular Isopentenyl Pyrophosphate Release and Vî39Vî́2 T-Cell Activation By Dendritic Cells. Blood, 2016, 128, 3709-3709.
1.4

0
正

Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma. Molecular and Cellular Therapies, 2015, 3, 8.
0.2

19

Pharmacological Preconditioning by Adenosine A2a Receptor Stimulation: Features of the Protected
1.9

11
Liver Cell Phenotype. BioMed Research International, 2015, 2015, 1-9.

Pancreatic cancer vaccine: a unique potential therapy. Gastrointestinal Cancer: Targets and Therapy,
2015, , 1.
5.5

0

Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. Journal of Hepatology, 2015, 62, 573-580.

55	Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget, 2015, 6, 11098-11113.	1.8
56	Class II Transactivator-Induced MHC Class II Expression in Pancreatic Cancer Cells Leads to Tumor Rejection and a Specific Antitumor Memory Response. Pancreas, 2014, 43, 1066-1072.	1.1
57	Chimeric Rat/Human HER2 Efficiently Circumvents HER2 Tolerance in Cancer Patients. Clinical Cancer Research, 2014, 20, 2910-2921.	7.0
58	Th22 cells are expanded in multiple sclerosis and are resistant to IFN-î2. Journal of Leukocyte Biology, 2014, 96, 1155-1164.	3.3

Mass spectrometric analysis reveals O-methylation of pyruvate kinase from pancreatic cancer cells.
Analytical and Bioanalytical Chemistry, 2013, 405, 4937-4943.
62

Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and <scp>TREM</scp>â€』 expression. European Journal of Immunology, 2013, 43, 949-966.
2.9

49

63	Ex vivo analysis of pancreatic cancer-infiltrating T lymphocytes reveals that ENO-specific Tregs accumulate in tumor tissue and inhibit Th1/Th17 effector cell functions. Cancer Immunology, Immunotherapy, 2013, 62, 1249-1260.	4.2	102
64	Vaccination With ENO1 DNA Prolongs Survival of Genetically Engineered Mice With Pancreatic Cancer. Gastroenterology, 2013, 144, 1098-1106.	1.3	104
65	Quartz crystal microbalance with dissipation (QCM-D) as tool to exploit antigenấ ${ }^{\text {" }}$ antibody interactions in pancreatic ductal adenocarcinomadetection. Biosensors and Bioelectronics, 2013, 42, 646-652.	10.1	29
66	Early expression of the fractalkine receptor CX3CR1 in pancreatic carcinogenesis. British Journal of Cancer, 2013, 109, 2424-2433.	6.4	26
67	Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models. Journal of Hematology and Oncology, 2013, 6, 67.	17.0	42
68	Three are better than one: plasminogen receptors as cancer theranostic targets. Experimental Hematology and Oncology, 2013, 2, 12.	5.0	33
69	Towards pancreatic cancer diagnosis using EIS biochips. Lab on A Chip, 2013, 13, 730.	6.0	32

70 A self antigen reopens the games in pancreatic cancer. Oncolmmunology, 2013, 2, e24384.
$4.6 \quad 8$

Acute-Phase Protein Hemopexin Is a Negative Regulator of Th17 Response and Experimental Autoimmune
Encephalomyelitis Development. Journal of Immunology, 2013, 191,5451-5459.
0.8

28Th17 Cells in Multiple Sclerosis Express Higher Levels of JAK2, Which Increases Their SurfaceHypoxia modulates the gene expression profile of immunoregulatory receptors in human mature79 dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood, 2011, 117,
81 Investigation of the Ovarian and Prostate Cancer Peptidome for Candidate Early Detection Markers Using a Novel Nanoparticle Biomarker Capture Technology. AAPS Journal, 2010, 12, 504-518.
83 Mass Spectrometry Analysis of the Post-Translational Modifications of $\hat{\mathrm{I}}_{ \pm}$-Enolase from Pancreatic
Ductal Adenocarcinoma Cells. Journal of Proteome Research, 2010, 9, 2929-2936.
3.766Tâ€helper 17 cells expand in multiple sclerosis and are inhibited by interferonâ $\not \hat{\imath}^{2}$. Annals of Neurology,2009, 65, 499-509.
5.3

340

85 pancreatic ductal adenocarcinomaâ€associated antigen. International Journal of Cancer, 2009, 125,
639-648.

IL-6, but not IFN-Î3, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3
Type I IFN inhibits the expansion of Th17 lymphocytes from both healthy subjects and Multiple Sclerosis
patients. FASEB Journal, 2008, 22, 1069.6.

In the absence of IGF-1 signaling, IFN-î3 suppresses human malignant T-cell growth. Blood, 2007, 109,

Iron regulates T-lymphocyte sensitivity to the IFN-Î3/STAT1 signaling pathway in vitro and in vivo. Blood, 2005, 105, 3214-3221.
$1.4 \quad 40$
99 IFN- 13 inhibits the proliferation of allergen-activated T lymphocytes from atopic, asthmatic patients byinducing Fas/FasL-mediated apoptosis. Journal of Leukocyte Biology, 2004, 76, 423-432.

The role of IL-12, IL-23 and IFN-î3 in immunity to viruses. Cytokine and Growth Factor Reviews, 2004, 15,
7.2

95

Requirement for both IL-12 and IFN-Î3 signaling pathways in optimal IFN-Î3 production by human T cells.109 Surface Expression of the IFN-î3R2 Chain Is Regulated by Intracellular Trafficking in Human T
Partial Interferonâ€̂̂3 Receptor Signaling Chain Deficiency in a Patient with Bacille Calmetteâ€GuÃ@rin andMycobacterium abscessusInfection. Journal of Infectious Diseases, 2000, 181, 379-384.
Inheritable defects in interleukinâ€d 2â€•and interferonâ€gammaâ€mediated immunity and the TH1/TH2 paradigm 5.7
in man. Allergy: European Journal of Allergy and Clinical Immunology, 1999, 54, 409-412.

112 Expression and Role of IL-15 in Post-Burn Hypertrophic Scars. Journal of Investigative Dermatology,

Functional analysis of T lymphocytes infiltrating the dermis and epidermis of post-burn hypertrophic
1.9 scar tissues. Burns, 1999, 25, 43-48.
117 Expression and role in apoptosis of the alpha- and beta-chains of the IFN-gamma receptor on human Th1and Th2 clones. Journal of Immunology, 1997, 159, 206-13.Immunology, 1996, 157, 1935-43.
119 Environmental signals influencing expression of the IFN-gamma receptor on human T cells control whether IFN-gamma promotes proliferation or apoptosis. Journal of Immunology, 1994, 152, 496-504. 0.8 58
Modulation of interferon- $\hat{1}^{3}$ receptor during human T lymphocyte alloactivation. European Journal of Immunology, 1993, 23, 1226-1231.

[^0]: Source: https://exaly.com/author-pdf/5391468/publications.pdf
 Version: 2024-02-01

