
Warren Strober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5391343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of Type 1 Diabetes by Microbiome Maintenance. Gastroenterology, 2022, 162, 1042-1044.	1.3	Ο
2	The Crohn Disease-associated ATG16L1 ^{T300A} polymorphism regulates inflammatory responses by modulating TLR- and NLR-mediated signaling. Autophagy, 2022, 18, 2561-2575.	9.1	17
3	In lasting tribute: Dr Thomas Waldmann, September 21, 1930, to September 25, 2021. Journal of Allergy and Clinical Immunology, 2022, , .	2.9	0
4	Inflammasome Regulation: Therapeutic Potential for Inflammatory Bowel Disease. Molecules, 2021, 26, 1725.	3.8	15
5	Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β–mediated colitis. Journal of Clinical Investigation, 2020, 130, 1793-1807.	8.2	62
6	RICK/RIP2 is a NOD2-independent nodal point of gut inflammation. International Immunology, 2019, 31, 669-683.	4.0	50
7	E-protein regulatory network links TCR signaling to effector Treg cell differentiation. Proceedings of the United States of America, 2019, 116, 4471-4480.	7.1	11
8	The Role of NLRP3 and IL- $1\hat{l}^2$ in the Pathogenesis of Inflammatory Bowel Disease. Frontiers in Immunology, 2018, 9, 2566.	4.8	162
9	Mechanistic Insights into Autoimmune Pancreatitis and IgG4-Related Disease. Trends in Immunology, 2018, 39, 874-889.	6.8	54
10	An increase in LRRK2 suppresses autophagy and enhances Dectin-1–induced immunity in a mouse model of colitis. Science Translational Medicine, 2018, 10, .	12.4	98
11	Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease. Journal of Clinical Investigation, 2018, 128, 1793-1806.	8.2	72
12	The Inflammatory Bowel Disease–Associated Autophagy Gene <i>Atg16L1T300A</i> Acts as a Dominant Negative Variant in Mice. Journal of Immunology, 2017, 198, 2457-2467.	0.8	20
13	Chronic Fibro-Inflammatory Responses in Autoimmune Pancreatitis Depend on IFN-α and IL-33 Produced by Plasmacytoid Dendritic Cells. Journal of Immunology, 2017, 198, 3886-3896.	0.8	61
14	Remodelling of the gut microbiota by hyperactive NLRP3 induces regulatory T cells to maintain homeostasis. Nature Communications, 2017, 8, 1896.	12.8	147
15	Nucleotide-binding oligomerization domain 1 and gastrointestinal disorders. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 578-599.	3.8	11
16	Protein-Losing Enteropathies. , 2015, , 1667-1694.		3
17	Experimental Models of Inflammatory Bowel Diseases. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 154-170.	4.5	508
18	Chronic inflammation and the development of malignancy in the GI tract. Trends in Immunology, 2015, 36, 451-459.	6.8	49

#	Article	IF	CITATIONS
19	Immune Mechanisms of Pancreatitis. , 2015, , 1719-1736.		Ο
20	Plasmacytoid Dendritic Cell Activation and IFN-α Production Are Prominent Features of Murine Autoimmune Pancreatitis and Human IgG4-Related Autoimmune Pancreatitis. Journal of Immunology, 2015, 195, 3033-3044.	0.8	67
21	Dynamic changes in E-protein activity regulate T reg cell development. Journal of Experimental Medicine, 2014, 211, 2651-2668.	8.5	19
22	Cellular and molecular mechanisms underlying <scp>NOD</scp> 2 riskâ€associated polymorphisms in <scp>C</scp> rohn's disease. Immunological Reviews, 2014, 260, 249-260.	6.0	85
23	Impact of the gut microbiome on mucosal inflammation. Trends in Immunology, 2013, 34, 423-430.	6.8	65
24	Sensing of Commensal Organisms by the Intracellular Sensor NOD1 Mediates Experimental Pancreatitis. Immunity, 2012, 37, 326-338.	14.3	84
25	Proinflammatory Cytokines in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology, 2011, 140, 1756-1767.e1.	1.3	944
26	Adherent-invasive E. coli in Crohn disease: bacterial "agent provocateur― Journal of Clinical Investigation, 2011, 121, 841-844.	8.2	31
27	Activation of type I IFN signaling by NOD1 mediates mucosal host defense against <i>Helicobacter pylori</i> infection. Gut Microbes, 2011, 2, 61-65.	9.8	31
28	Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11bhighGr1low macrophages. Journal of Clinical Investigation, 2011, 121, 1692-1708.	8.2	79
29	Proinflammatory cytokines underlying the inflammation of Crohn's disease. Current Opinion in Gastroenterology, 2010, 26, 310-317.	2.3	95
30	New insights into the nature of autoinflammatory diseases from mice with <i>Nlrp3</i> mutations. European Journal of Immunology, 2010, 40, 649-653.	2.9	15
31	The LTi Cell, an Immunologic Chameleon. Immunity, 2010, 33, 650-652.	14.3	10
32	National Institutes of Health Center for Human Immunology Conference, September 2009. Annals of the New York Academy of Sciences, 2010, 1200, E1-23.	3.8	12
33	The expanding TH2 universe. Nature, 2010, 463, 434-435.	27.8	11
34	Inside the microbial and immune labyrinth: Gut microbes: friends or fiends?. Nature Medicine, 2010, 16, 1195-1197.	30.7	18
35	NOD1-Mediated Mucosal Host Defense against <i>Helicobacter pylori</i> . International Journal of Inflammation, 2010, 2010, 1-6.	1.5	16
36	NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. Journal of Clinical Investigation, 2010, 120, 1645-1662.	8.2	210

#	Article	IF	CITATIONS
37	A Bench-to-Bedside Trail of Research Leading to the Understanding and Treatment of Ulcerative Colitis. , 2010, , 377-383.		0
38	A Mutation in the Nlrp3 Gene Causing Inflammasome Hyperactivation Potentiates Th17 Cell-Dominant Immune Responses. Immunity, 2009, 30, 860-874.	14.3	331
39	The Multifaceted Influence of the Mucosal Microflora on Mucosal Dendritic Cell Responses. Immunity, 2009, 31, 377-388.	14.3	80
40	Why study animal models of IBD?. Inflammatory Bowel Diseases, 2008, 14, S129-S131.	1.9	13
41	Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17–producing T cells. Nature Immunology, 2008, 9, 1297-1306.	14.5	436
42	A Transient Breach in the Epithelial Barrier Leads to Regulatory T-Cell Generation and Resistance to Experimental Colitis. Gastroenterology, 2008, 135, 1612-1623.e5.	1.3	81
43	Why study animal models of IBD?. Inflammatory Bowel Diseases, 2008, 14, S129-S131.	1.9	3
44	Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. Journal of Clinical Investigation, 2008, 118, 545-59.	8.2	276
45	Cutting Edge: Regulatory T Cells Induce CD4+CD25â^ Foxp3â^ T Cells or Are Self-Induced to Become Th17 Cells in the Absence of Exogenous TGF-β. Journal of Immunology, 2007, 178, 6725-6729.	0.8	657
46	Induction of IL-13 Triggers TGF-β1-Dependent Tissue Fibrosis in Chronic 2,4,6-Trinitrobenzene Sulfonic Acid Colitis. Journal of Immunology, 2007, 178, 5859-5870.	0.8	189
47	The mechanism of action of probiotics. Current Opinion in Gastroenterology, 2007, 23, 679-692.	2.3	311
48	NOD2 Transgenic Mice Exhibit Enhanced MDP-Mediated Down-Regulation of TLR2 Responses and Resistance to Colitis Induction. Gastroenterology, 2007, 133, 1510-1521.	1.3	95
49	The fundamental basis of inflammatory bowel disease. Journal of Clinical Investigation, 2007, 117, 514-521.	8.2	1,136
50	Excess IL-12 but not IL-23 Accompanies the Inflammatory Bowel Disease Associated With Common Variable Immunodeficiency. Gastroenterology, 2006, 131, 748-756.	1.3	101
51	Inhibition of Smad7 With a Specific Antisense Oligonucleotide Facilitates TGF-β1–Mediated Suppression of Colitis. Gastroenterology, 2006, 131, 1786-1798.	1.3	182
52	T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on <i>IFNG</i> gene acetylation and transcription. Journal of Experimental Medicine, 2006, 203, 755-766.	8.5	286
53	Nucleotide Binding Oligomerization Domain 2 Deficiency Leads to Dysregulated TLR2 Signaling and Induction of Antigen-Specific Colitis. Immunity, 2006, 25, 473-485.	14.3	213
54	Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Reviews Immunology, 2006, 6, 9-20.	22.7	730

#	Article	IF	CITATIONS
55	Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflammatory Bowel Diseases, 2006, 12, 9-15.	1.9	290
56	IMMUNOLOGY: Unraveling Gut Inflammation. Science, 2006, 313, 1052-1054.	12.6	38
57	Antibodies to Complement Receptor 3 Treat Established Inflammation in Murine Models of Colitis and a Novel Model of Psoriasiform Dermatitis. Journal of Immunology, 2006, 177, 6974-6982.	0.8	43
58	Experimental Models of Mucosal Inflammation. Advances in Experimental Medicine and Biology, 2006, 579, 55-97.	1.6	13
59	Regulatory Cells Induced by Feeding TNP-Haptenated Colonic Protein Cross-protect Mice From Colitis Induced by an Unrelated Hapten. Inflammatory Bowel Diseases, 2005, 11, 48-55.	1.9	14
60	Probiotics Ameliorate Recurrent Th1-Mediated Murine Colitis by Inducing IL-10 and IL-10-Dependent TGF-Î2-Bearing Regulatory Cells. Journal of Immunology, 2005, 174, 3237-3246.	0.8	480
61	Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-ÂB decoy oligonucleotides. Journal of Clinical Investigation, 2005, 115, 3057-3071.	8.2	152
62	Downstream Effector Functions Of T-Cell Activation. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, S26.	1.8	1
63	A major quantitative trait locus on mouse chromosome 3 is involved in disease susceptibility in different colitis models. Gastroenterology, 2005, 128, 74-85.	1.3	150
64	Anti–Interleukin-12 Antibody for Active Crohn's Disease. New England Journal of Medicine, 2004, 351, 2069-2079.	27.0	809
65	CD1d-Restricted T Cell Pathways at the Epithelial-Lymphocyte-Luminal Interface. Journal of Pediatric Gastroenterology and Nutrition, 2004, 39, S719-S722.	1.8	2
66	TGF-β1 Plays an Important Role in the Mechanism of CD4+CD25+ Regulatory T Cell Activity in Both Humans and Mice. Journal of Immunology, 2004, 172, 834-842.	0.8	598
67	NOD2 is a negative regulator of Toll-like receptor 2–mediated T helper type 1 responses. Nature Immunology, 2004, 5, 800-808.	14.5	767
68	Epithelial cells pay a Toll for protection. Nature Medicine, 2004, 10, 898-900.	30.7	56
69	Insights into the Mechanism of Oral Tolerance Derived from the Study of Models of Mucosal Inflammation. Annals of the New York Academy of Sciences, 2004, 1029, 115-131.	3.8	15
70	Natural Killer T Cells in Mucosal Homeostasis. Annals of the New York Academy of Sciences, 2004, 1029, 154-168.	3.8	12
71	Oral Tolerance: Animal Disease Models and Human Trials-Summary of Part V. Annals of the New York Academy of Sciences, 2004, 1029, 310-312.	3.8	1
72	Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. Journal of Clinical Investigation, 2004, 113, 1490-1497.	8.2	681

#	Article	IF	CITATIONS
73	The immunological and genetic basis of inflammatory bowel disease. Nature Reviews Immunology, 2003, 3, 521-533.	22.7	1,603
74	GATA-3 Suppresses Th1 Development by Downregulation of Stat4 and Not through Effects on IL-12Rβ2 Chain or T-bet. Immunity, 2003, 18, 415-428.	14.3	245
75	Transforming Growth Factor (TGF)-β1–producing Regulatory T Cells Induce Smad-mediated Interleukin 10 Secretion That Facilitates Coordinated Immunoregulatory Activity and Amelioration of TGF-β1–mediated Fibrosis. Journal of Experimental Medicine, 2003, 198, 1179-1188.	8.5	237
76	The Interrelated Roles of TGF-Î ² and IL-10 in the Regulation of Experimental Colitis. Journal of Immunology, 2002, 168, 900-908.	0.8	251
77	Activated STAT4 Has an Essential Role in Th1 Differentiation and Proliferation That Is Independent of Its Role in the Maintenance of IL-12Rβ2 Chain Expression and Signaling. Journal of Immunology, 2002, 169, 4388-4398.	0.8	145
78	The Immunology of Mucosal Models of Inflammation. Annual Review of Immunology, 2002, 20, 495-549.	21.8	1,230
79	Experimental murine colitis is regulated by two genetic loci, including one on chromosome 11 that regulates IL-12 responses. Gastroenterology, 2002, 123, 554-565.	1.3	76
80	Regulation of experimental mucosal inflammation. Acta Odontologica Scandinavica, 2001, 59, 244-247.	1.6	15
81	BALB/c Mice Bearing a Transgenic IL-12 Receptor β2 Gene Exhibit a Nonhealing Phenotype to <i>Leishmania major</i> Infection Despite Intact IL-12 Signaling. Journal of Immunology, 2001, 166, 6776-6783.	0.8	33
82	Cell Contact–Dependent Immunosuppression by Cd4+Cd25+Regulatory T Cells Is Mediated by Cell Surface–Bound Transforming Growth Factor β. Journal of Experimental Medicine, 2001, 194, 629-644.	8.5	1,448
83	Oral Administration of Recombinant Cholera Toxin Subunit B Inhibits IL-12-Mediated Murine Experimental (Trinitrobenzene Sulfonic Acid) Colitis. Journal of Immunology, 2001, 166, 3522-3532.	0.8	54
84	The effect of TGF-β1 on immune responses of naÃ⁻ve versus memory CD4+ Th1/Th2 T cells. European Journal of Immunology, 2000, 30, 2101-2111.	2.9	151
85	Treatment of Experimental (Trinitrobenzene Sulfonic Acid) Colitis by Intranasal Administration of Transforming Growth Factor (Tgf)-1²1 Plasmid. Journal of Experimental Medicine, 2000, 192, 41-52.	8.5	167
86	T Helper Type 2 Cell Differentiation Occurs in the Presence of Interleukin 12 Receptor β2 Chain Expression and Signaling. Journal of Experimental Medicine, 2000, 191, 847-858.	8.5	62
87	Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Current Opinion in Immunology, 1999, 11, 648-656.	5.5	413
88	Anti–interleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology, 1999, 117, 1078-1088.	1.3	263
89	Oral tolerance. Journal of Clinical Immunology, 1998, 18, 1-30.	3.8	115
90	Oxazolone Colitis: A Murine Model of  T Helper Cell Type 2 Colitis Treatable with Antibodies to Interleukin 4. Journal of Experimental Medicine, 1998, 188, 1929-1939.	8.5	493

#	Article	IF	CITATIONS
91	Regulation of transforming growth factorâ€Î² production by interleukinâ€12. European Journal of Immunology, 1997, 27, 1213-1220.	2.9	73
92	Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. European Journal of Immunology, 1997, 27, 1743-1750.	2.9	393
93	Chronic intestinal inflammation: An unexpected outcome in cytokine or T cell receptor mutant mice. Cell, 1993, 75, 203-205.	28.9	194