
Hiroyasu Tsutsuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5391010/publications.pdf Version: 2024-02-01

ΗΙΡΟΥΛΟΙΙ ΤΟΙΙΤΟΙΙΚΙ

#	Article	IF	CITATIONS
1	New insights into the regulatory roles of glutathione in NLRP3-inflammasome-mediated immune and inflammatory responses. Journal of Biochemistry, 2022, 171, 367-377.	1.7	4
2	Regulation of nitric oxide/reactive oxygen species redox signaling by nNOS splicing variants. Nitric Oxide - Biology and Chemistry, 2022, 120, 44-52.	2.7	2
3	Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression via the NOD1/RIPK2/NF-κB pathway. Cancer Letters, 2022, 530, 59-67.	7.2	40
4	Subtilase cytotoxin from Shiga-toxigenic Escherichia coli impairs the inflammasome and exacerbates enteropathogenic bacterial infection. IScience, 2022, 25, 104050.	4.1	5
5	Controlled Delivery of an Anti-Inflammatory Toxin to Macrophages by Mutagenesis and Nanoparticle Modification. Nanomaterials, 2022, 12, 2161.	4.1	3
6	Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. British Journal of Cancer, 2021, 124, 963-974.	6.4	52
7	Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials, 2021, 269, 120631.	11.4	21
8	Cysteine Hydropersulfide Inactivates β-Lactam Antibiotics with Formation of Ring-Opened Carbothioic S-Acids in Bacteria. ACS Chemical Biology, 2021, 16, 731-739.	3.4	16
9	ATP exposure stimulates glutathione efflux as a necessary switch for NLRP3 inflammasome activation. Redox Biology, 2021, 41, 101930.	9.0	26
10	Development of potent antipseudomonal βâ€lactams by means of polycarboxylation of aminopenicillins. Microbiology and Immunology, 2021, 65, 449-461.	1.4	0
11	Antioxidative and anti-inflammatory actions of reactive cysteine persulfides. Journal of Clinical Biochemistry and Nutrition, 2021, 68, 5-8.	1.4	20
12	A novel endoplasmic stress mediator, Kelch domain containing 7B (KLHDC7B), increased Harakiri (HRK) in the SubAB-induced apoptosis signaling pathway. Cell Death Discovery, 2021, 7, 360.	4.7	2
13	Host response to the subtilase cytotoxin produced by locus of enterocyte effacementâ€negative Shigaâ€ŧoxigenic <i>Escherichia coli</i> . Microbiology and Immunology, 2020, 64, 657-665.	1.4	3
14	Involvement of protein disulfide isomerase in subtilase cytotoxin-induced cell death in HeLa cells. Biochemical and Biophysical Research Communications, 2020, 525, 1068-1073.	2.1	5
15	8-Nitro-cGMP modulates exocytosis in adrenal chromaffin cells. Biochemical and Biophysical Research Communications, 2020, 526, 225-230.	2.1	3
16	Preparation of Biodegradable PLGA-Nanoparticles Used for pH-Sensitive Intracellular Delivery of an Anti-inflammatory Bacterial Toxin to Macrophages. Chemical and Pharmaceutical Bulletin, 2020, 68, 363-368.	1.3	6
17	Synthesis of Pegylated Manganese Protoporphyrin as a Catalase Mimic and Its Therapeutic Application to Acetaminophen-Induced Acute Liver Failure. Biological and Pharmaceutical Bulletin, 2019, 42, 1199-1206.	1.4	8
18	Gold-Treated Silver Nanoparticles Have Enhanced Antimicrobial Activity. Bulletin of the Chemical Society of Japan, 2019, 92, 297-301.	3.2	14

HIROYASU TSUTSUKI

#	Article	IF	CITATIONS
19	Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock. Cell Chemical Biology, 2019, 26, 686-698.e4.	5.2	64
20	Involvement of nitric oxide/reactive oxygen species signaling via 8-nitro-cGMP formation in 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells and rat cerebellar granule neurons. Biochemical and Biophysical Research Communications, 2018, 495, 2165-2170.	2.1	10
21	A Simple PLGA-AgNPL Film for Antibiofilm Formation by Contact Bactericidal Activity. Chemistry Letters, 2018, 47, 308-310.	1.3	о
22	Mechanism of inhibition of Shiga-toxigenic Escherichia coli SubAB cytotoxicity by steroids and diacylglycerol analogues. Cell Death Discovery, 2018, 4, 22.	4.7	4
23	Reactive Persulfides from Salmonella Typhimurium Downregulate Autophagy-Mediated Innate Immunity in Macrophages by Inhibiting Electrophilic Signaling. Cell Chemical Biology, 2018, 25, 1403-1413.e4.	5.2	28
24	Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling. Advances in Microbial Physiology, 2018, 72, 1-28.	2.4	25
25	Gold Coating of Silver Nanoplates for Enhanced Dispersion Stability and Efficient Antimicrobial Activity against Intracellular Bacteria. Langmuir, 2018, 34, 10413-10418.	3.5	26
26	Silver Nanoparticles as Potential Antibiofilm Agents against Human Pathogenic Bacteria. Chemistry Letters, 2017, 46, 594-596.	1.3	12
27	Superoxide generation from nNOS splice variants and its potential involvement in redox signal regulation. Biochemical Journal, 2017, 474, 1149-1162.	3.7	16
28	Synthesis of l -cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome. Free Radical Biology and Medicine, 2017, 106, 69-79.	2.9	18
29	Exposure to Electrophiles Impairs Reactive Persulfide-Dependent Redox Signaling in Neuronal Cells. Chemical Research in Toxicology, 2017, 30, 1673-1684.	3.3	39
30	Subtilase cytotoxin produced by locus of enterocyte effacementâ€negative Shigaâ€ŧoxigenic <i>Escherichia coli</i> induces stress granule formation. Cellular Microbiology, 2016, 18, 1024-1040.	2.1	25
31	Mice Deficient in Angiopoietin-like Protein 2 (Angptl2) Gene Show Increased Susceptibility to Bacterial Infection Due to Attenuated Macrophage Activity. Journal of Biological Chemistry, 2016, 291, 18843-18852.	3.4	12
32	Endogenous occurrence of protein S-guanylation in Escherichia coli: Target identification and genetic regulation. Biochemical and Biophysical Research Communications, 2016, 478, 7-11.	2.1	7
33	Persistent Activation of cGMP-Dependent Protein Kinase by a Nitrated Cyclic Nucleotide via Site Specific Protein <i>S</i> -Guanylation. Biochemistry, 2016, 55, 751-761.	2.5	25
34	8-Nitro-cGMP Enhances SNARE Complex Formation through S-Guanylation of Cys90 in SNAP25. ACS Chemical Neuroscience, 2015, 6, 1715-1725.	3.5	22
35	Uptake of Shiga-toxigenic <i>Escherichia coli</i> â€SubAB by HeLa cells requires an actin- and lipid raft-dependent pathway. Cellular Microbiology, 2014, 16, 1582-1601.	2.1	22
36	DAP1, a Negative Regulator of Autophagy, Controls SubAB-Mediated Apoptosis and Autophagy. Infection and Immunity, 2014, 82, 4899-4908.	2.2	34

HIROYASU TSUTSUKI

#	Article	IF	CITATIONS
37	Subtilase Cytotoxin Enhances Escherichia coli Survival in Macrophages by Suppression of Nitric Oxide Production through the Inhibition of NF-κB Activation. Infection and Immunity, 2012, 80, 3939-3951.	2.2	30
38	Regulation of Subtilase Cytotoxin-Induced Cell Death by an RNA-Dependent Protein Kinase-Like Endoplasmic Reticulum Kinase-Dependent Proteasome Pathway in HeLa Cells. Infection and Immunity, 2012, 80, 1803-1814.	2.2	18
39	Identification of Subtilase Cytotoxin (SubAB) Receptors Whose Signaling, in Association with SubAB-Induced BiP Cleavage, Is Responsible for Apoptosis in HeLa Cells. Infection and Immunity, 2011, 79, 617-627.	2.2	28
40	Nitric oxide inhibits depolarization-evoked glutamate release from rat cerebellar granule cells. Nitric Oxide - Biology and Chemistry, 2007, 16, 217-227.	2.7	6