William C Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5390582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell, 1992, 70, 829-840.	13.5	1,093
2	Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell, 1991, 67, 753-765.	13.5	629
3	Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature, 1993, 361, 547-549.	13.7	349
4	A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell, 1995, 82, 37-46.	13.5	329
5	Ascidian prickle Regulates Both Mediolateral and Anterior-Posterior Cell Polarity of Notochord Cells. Current Biology, 2005, 15, 79-85.	1.8	144
6	Ascidians and the Plasticity of the Chordate Developmental Program. Current Biology, 2008, 18, R620-R631.	1.8	112
7	A functional cellulose synthase from ascidian epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 986-991.	3.3	110
8	Ascidian notochord morphogenesis. Developmental Dynamics, 2007, 236, 1748-1757.	0.8	96
9	<i>chongmague</i> reveals an essential role for laminin-mediated boundary formation in chordate convergence and extension movements. Development (Cambridge), 2008, 135, 33-41.	1.2	80
10	Tube formation by complex cellular processes in Ciona intestinalis notochord. Developmental Biology, 2009, 330, 237-249.	0.9	76
11	Pitx genes in Tunicates provide new molecular insight into the evolutionary origin of pituitary. Gene, 2002, 287, 107-113.	1.0	71
12	Pigmentation in the sensory organs of the ascidian larva is essential for normal behavior. Journal of Experimental Biology, 2005, 208, 433-438.	0.8	60
13	Generation ofCi-Brachyury-GFP stable transgenic lines in the ascidianCiona savignyi. Genesis, 2003, 35, 248-259.	0.8	59
14	<i>brachyury</i> null mutant-induced defects in juvenile ascidian endodermal organs. Development (Cambridge), 2009, 136, 35-39.	1.2	57
15	doublesex/mab3 related-1 (dmrt1) is essential for development of anterior neural plate derivatives in Ciona. Development (Cambridge), 2010, 137, 2197-2203.	1.2	57
16	Revisions to theXenopus gastrula fate map: Implications for mesoderm induction and patterning. Developmental Dynamics, 2002, 225, 409-421.	0.8	53
17	The ascidian mouth opening is derived from the anterior neuropore: Reassessing the mouth/neural tube relationship in chordate evolution. Developmental Biology, 2010, 344, 138-149.	0.9	53
18	FGF Signaling Restricts the Primary Blood Islands to Ventral Mesoderm. Developmental Biology, 2000, 228, 304-314	0.9	40

WILLIAM C SMITH

#	Article	IF	CITATIONS
19	T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression. Cell Reports, 2015, 13, 829-839.	2.9	37
20	Ciona Genetics. Methods in Molecular Biology, 2011, 770, 401-422.	0.4	34
21	Parallel visual circuitry in a basal chordate. ELife, 2019, 8, .	2.8	34
22	Self- and Cross-Fertilization in the Solitary AscidianCiona savignyi. Biological Bulletin, 2005, 209, 107-112.	0.7	33
23	A conserved role for FGF signaling in chordate otic/atrial placode formation. Developmental Biology, 2007, 312, 245-257.	0.9	33
24	Reciprocal and dynamic polarization of planar cell polarity core components and myosin. ELife, 2015, 4, e05361.	2.8	33
25	Developmental genetics in primitive chordates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1573-1582.	1.8	32
26	Culture of Adult Ascidians and Ascidian Genetics. Methods in Cell Biology, 2004, 74, 143-170.	0.5	31
27	Whole-organ cell shape analysis reveals the developmental basis of ascidian notochord taper. Developmental Biology, 2013, 373, 281-289.	0.9	31
28	Photoreceptor specialization and the visuomotor repertoire of the primitive chordate <i>Ciona</i> . Journal of Experimental Biology, 2018, 221, .	0.8	31
29	The C. savignyi genetic map and its integration with the reference sequence facilitates insights into chordate genome evolution. Genome Research, 2008, 18, 1369-1379.	2.4	29
30	Antagonistic Inhibitory Circuits Integrate Visual and Gravitactic Behaviors. Current Biology, 2020, 30, 600-609.e2.	1.8	27
31	Boundaries and Functional Domains in the Animal/Vegetal Axis of Xenopus Gastrula Mesoderm. Developmental Biology, 2001, 236, 465-477.	0.9	22
32	Did the first chordates organize without the organizer?. Trends in Genetics, 2005, 21, 506-510.	2.9	22
33	A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis. Development (Cambridge), 2013, 140, 147-155.	1.2	22
34	An ascidian engrailed gene. Development Genes and Evolution, 2002, 212, 399-402.	0.4	18
35	An organismal perspective on C. intestinalis development, origins and diversification. ELife, 2015, 4, .	2.8	17
36	A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development (Cambridge), 2017, 144, 1787-1797.	1.2	16

WILLIAM C SMITH

#	Article	IF	CITATIONS
37	ADMP2 is essential for primitive blood and heart development in Xenopus. Developmental Biology, 2006, 299, 411-423.	0.9	15
38	Key steps in the morphogenesis of a cranial placode in an invertebrate chordate, the tunicate Ciona savignyi. Developmental Biology, 2010, 340, 134-144.	0.9	14
39	A one-dimensional model of PCP signaling: Polarized cell behavior in the notochord of the ascidian Ciona. Developmental Biology, 2014, 395, 120-130.	0.9	14
40	The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. Mechanisms of Development, 2002, 118, 45-56.	1.7	13
41	Frimousse – a spontaneous ascidian mutant with anterior ectodermal fate transformation. Current Biology, 2004, 14, R408-R410.	1.8	13
42	Disruption of left-right axis specification in Ciona induces molecular, cellular, and functional defects in asymmetric brain structures. BMC Biology, 2021, 19, 141.	1.7	13
43	Inverse Correlation of Population Similarity and Introduction Date for Invasive Ascidians. PLoS ONE, 2008, 3, e2552.	1.1	10
44	Membrane segmentation via active learning with deep networks. , 2016, , .		8
45	CellECT: cell evolution capturing tool. BMC Bioinformatics, 2016, 17, 88.	1.2	8
46	Tunicate gastrulation. Current Topics in Developmental Biology, 2020, 136, 219-242.	1.0	8
47	Expression cloning in ascidians: isolation of a novel member of the asctacin protease family. Development Genes and Evolution, 2002, 212, 81-86.	0.4	7
48	Exploiting the Extraordinary Genetic Polymorphism of <i>Ciona</i> for Developmental Genetics with Whole Genome Sequencing. Genetics, 2014, 197, 49-59.	1.2	7
49	Cellular Processes of Notochord Formation. Advances in Experimental Medicine and Biology, 2018, 1029, 165-177.	0.8	6
50	Misregulation of cell adhesion molecules in the Ciona neural tube closure mutant bugeye. Developmental Biology, 2021, 480, 14-24.	0.9	5
51	Segmentation of ascidian notochord cells in DIC timelapse images. Microscopy Research and Technique, 2011, 74, 727-734.	1.2	4
52	A Linear Program Formulation for the Segmentation of Ciona Membrane Volumes. Lecture Notes in Computer Science, 2013, 16, 444-451.	1.0	4
53	Fold Change Detection in Visual Processing. Frontiers in Neural Circuits, 2021, 15, 705161.	1.4	3
54	ACAM, a novel member of the neural IgCAM family, mediates anterior neural tube closure in a primitive chordate. Developmental Biology, 2016, 409, 288-296.	0.9	2