James A Hoxie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5390457/publications.pdf Version: 2024-02-01

IMMES & HOVIE

#	Article	IF	CITATIONS
1	CD4-Independent Infection by HIV-2 Is Mediated by Fusin/CXCR4. Cell, 1996, 87, 745-756.	28.9	729
2	CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Current Biology, 1997, 7, 112-121.	3.9	486
3	Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. New England Journal of Medicine, 2016, 375, 2037-2050.	27.0	391
4	Antigenic conservation and immunogenicity of the HIV coreceptor binding site. Journal of Experimental Medicine, 2005, 201, 1407-1419.	8.5	296
5	Analysis of Neutralization Specificities in Polyclonal Sera Derived from Human Immunodeficiency Virus Type 1-Infected Individuals. Journal of Virology, 2009, 83, 1045-1059.	3.4	238
6	HIV Vaccine Research: The Way Forward. Science, 2008, 321, 530-532.	12.6	229
7	Molecular Architectures of Trimeric SIV and HIV-1 Envelope Glycoproteins on Intact Viruses: Strain-Dependent Variation in Quaternary Structure. PLoS Pathogens, 2010, 6, e1001249.	4.7	161
8	Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy–treated macaques. Nature Methods, 2015, 12, 427-432.	19.0	153
9	Relationships between CD4 Independence, Neutralization Sensitivity, and Exposure of a CD4-Induced Epitope in a Human Immunodeficiency Virus Type 1 Envelope Protein. Journal of Virology, 2001, 75, 5230-5239.	3.4	135
10	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	4.7	130
11	A Conserved Dileucine Motif Mediates Clathrin and AP-2–dependent Endocytosis of the HIV-1 Envelope Protein. Molecular Biology of the Cell, 2007, 18, 414-425.	2.1	120
12	Human Immunodeficiency Virus-1 Entry Into Purified Blood Dendritic Cells Through CC and CXC Chemokine Coreceptors. Blood, 1997, 90, 1379-1386.	1.4	119
13	Determinants of CD4 Independence for a Human Immunodeficiency Virus Type 1 Variant Map outside Regions Required for Coreceptor Specificity. Journal of Virology, 1999, 73, 10310-10319.	3.4	111
14	Toward an Antibody-Based HIV-1 Vaccine. Annual Review of Medicine, 2010, 61, 135-152.	12.2	110
15	Signaling through G Proteins and G Protein-coupled Receptors during Platelet Activation. Thrombosis and Haemostasis, 1993, 70, 217-223.	3.4	104
16	Common mechanism of infection by lentiviruses. Nature, 1997, 385, 587-587.	27.8	97
17	Quantification of Entry Phenotypes of Macrophage-Tropic HIV-1 across a Wide Range of CD4 Densities. Journal of Virology, 2014, 88, 1858-1869.	3.4	92
18	Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8 ⁺ T cells. Science Translational Medicine, 2019, 11, .	12.4	81

James A Hoxie

#	Article	IF	CITATIONS
19	In Vivo Attenuation of Simian Immunodeficiency Virus by Disruption of a Tyrosine-Dependent Sorting Signal in the Envelope Glycoprotein Cytoplasmic Tail. Journal of Virology, 2001, 75, 278-291.	3.4	78
20	Inhibitory Mechanism of the CXCR4 Antagonist T22 against Human Immunodeficiency Virus Type 1 Infection. Journal of Virology, 1999, 73, 7489-7496.	3.4	77
21	V3 Loop Truncations in HIV-1 Envelope Impart Resistance to Coreceptor Inhibitors and Enhanced Sensitivity to Neutralizing Antibodies. PLoS Pathogens, 2007, 3, e117.	4.7	68
22	Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma. Journal of Virology, 2009, 83, 1240-1259.	3.4	67
23	The Simian Immunodeficiency Virus Envelope Glycoprotein Contains Multiple Signals that Regulate its Cell Surface Expression and Endocytosis. Traffic, 2000, 1, 661-674.	2.7	64
24	Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nature Medicine, 2020, 26, 1776-1787.	30.7	63
25	Characterization and Epitope Mapping of Neutralizing Monoclonal Antibodies Produced by Immunization with Oligomeric Simian Immunodeficiency Virus Envelope Protein. Journal of Virology, 2000, 74, 7922-7935.	3.4	62
26	Clinical and immunologic impact of CCR5 blockade in graft-versus-host disease prophylaxis. Blood, 2017, 129, 906-916.	1.4	56
27	CD4-independent utilization of the CXCR4 chemokine receptor by HIV-1 and HIV-2. Journal of Reproductive Immunology, 1998, 41, 197-211.	1.9	55
28	Novel Cell and Gene Therapies for HIV. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007179-a007179.	6.2	54
29	Mechanisms of reactivation of latent tuberculosis infection due to SIV coinfection. Journal of Clinical Investigation, 2019, 129, 5254-5260.	8.2	52
30	Three-Dimensional Structures of Soluble CD4-Bound States of Trimeric Simian Immunodeficiency Virus Envelope Glycoproteins Determined by Using Cryo-Electron Tomography. Journal of Virology, 2011, 85, 12114-12123.	3.4	46
31	Mutations in HIV-1 Envelope That Enhance Entry with the Macaque CD4 Receptor Alter Antibody Recognition by Disrupting Quaternary Interactions within the Trimer. Journal of Virology, 2015, 89, 894-907.	3.4	46
32	Enhanced Exposure of the CD4-Binding Site to Neutralizing Antibodies by Structural Design of a Membrane-Anchored Human Immunodeficiency Virus Type 1 gp120 Domain. Journal of Virology, 2009, 83, 5077-5086.	3.4	43
33	Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathogens, 2016, 12, e1005983.	4.7	43
34	Replication-Competent Variants of Human Immunodeficiency Virus Type 2 Lacking the V3 Loop Exhibit Resistance to Chemokine Receptor Antagonists. Journal of Virology, 2007, 81, 9956-9966.	3.4	32
35	Loss of a Tyrosine-Dependent Trafficking Motif in the Simian Immunodeficiency Virus Envelope Cytoplasmic Tail Spares Mucosal CD4 Cells but Does Not Prevent Disease Progression. Journal of Virology, 2013, 87, 1528-1543.	3.4	32
36	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	2.4	29

James A Hoxie

#	Article	IF	CITATIONS
37	Extended CCR5 Blockade for Graft-versus-Host Disease Prophylaxis Improves Outcomes of Reduced-Intensity Unrelated Donor Hematopoietic Cell Transplantation: A Phase II Clinical Trial. Biology of Blood and Marrow Transplantation, 2019, 25, 515-521.	2.0	24
38	Roles for endocytosis in lentiviral replication. Trends in Cell Biology, 1997, 7, 1-4.	7.9	23
39	CD4-Independent Use of Rhesus CCR5 by Human Immunodeficiency Virus Type 2 Implicates an Electrostatic Interaction between the CCR5 N Terminus and the gp120 C4 Domain. Journal of Virology, 2001, 75, 10766-10778.	3.4	22
40	Derivation and Characterization of a Simian Immunodeficiency Virus SIVmac239 Variant with Tropism for CXCR4. Journal of Virology, 2009, 83, 9911-9922.	3.4	21
41	Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. Journal of Virology, 2015, 89, 10156-10175.	3.4	19
42	Construction of single-chain antibodies that bind an overlapping epitope of HIV-1 Nef. FEBS Letters, 1998, 441, 307-312.	2.8	17
43	Identification and characterization of a macrophage-tropic SIV envelope glycoprotein variant in blood from early infection in SIVmac251-infected macaques. Virology, 2014, 458-459, 53-68.	2.4	15
44	CCR5 interaction with HIV-1 Env contributes to Env-induced depletion of CD4 T cells in vitro and in vivo. Retrovirology, 2016, 13, 22.	2.0	13
45	CD4 ⁺ T Cells Support Production of Simian Immunodeficiency Virus Env Antibodies That Enforce CD4-Dependent Entry and Shape Tropism <i>In Vivo</i> . Journal of Virology, 2013, 87, 9719-9732.	3.4	12
46	The SIV Envelope Glycoprotein, Viral Tropism, and Pathogenesis: Novel Insights from Nonhuman Primate Models of AIDS. Current HIV Research, 2018, 16, 29-40.	0.5	12
47	The pigtail macaque (Macaca nemestrina) model of COVID-19 reproduces diverse clinical outcomes and reveals new and complex signatures of disease. PLoS Pathogens, 2021, 17, e1010162.	4.7	11
48	Distinct Molecular Pathways to X4 Tropism for a V3-Truncated Human Immunodeficiency Virus Type 1 Lead to Differential Coreceptor Interactions and Sensitivity to a CXCR4 Antagonist. Journal of Virology, 2010, 84, 8777-8789.	3.4	9
49	A Single Amino Acid Mutation in the Envelope Cytoplasmic Tail Restores the Ability of an Attenuated Simian Immunodeficiency Virus Mutant To Deplete Mucosal CD4 ⁺ T Cells. Journal of Virology, 2013, 87, 13048-13052.	3.4	9
50	Derivation and Characterization of a CD4-Independent, Non-CD4-Tropic Simian Immunodeficiency Virus. Journal of Virology, 2016, 90, 4966-4980.	3.4	9
51	Human Immunodeficiency Virus-1 Entry Into Purified Blood Dendritic Cells Through CC and CXC Chemokine Coreceptors. Blood, 1997, 90, 1379-1386.	1.4	8
52	Polymorphisms in Rhesus Macaque Tetherin Are Associated with Differences in Acute Viremia in Simian Immunodeficiency Virus Δ nef -Infected Animals. Journal of Virology, 2018, 92, .	3.4	7
53	Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.	4.7	6
54	A cellular trafficking signal in the SIV envelope protein cytoplasmic domain is strongly selected for in pathogenic infection. PLoS Pathogens, 2022, 18, e1010507.	4.7	4

#	Article	IF	CITATIONS
55	Tetherin downmodulation by SIVmac Nef lost with the H196Q escape variant is restored by an upstream variant. PLoS ONE, 2020, 15, e0225420.	2.5	3
56	Generating an Anti-HIV Vaccine Using Nucleoside-modified mRNA Encoding Envelope. AIDS Research and Human Retroviruses, 2014, 30, A249-A249.	1.1	1
57	Tuberculosis and HIV Coinfection: Genesis of the Supplement and Sponsors' Contribution. Journal of Infectious Diseases, 2007, 196, S4-S4.	4.0	0