Florian Hartig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5389706/publications.pdf

Version: 2024-02-01

83 papers 6,558 citations

34 h-index 71532 76 g-index

94 all docs 94 docs citations

times ranked

94

10389 citing authors

#	Article	IF	CITATIONS
1	Crossâ€validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40, 913-929.	2.1	1,092
2	Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 2012, 39, 2119-2131.	1.4	526
3	EU agricultural reform fails on biodiversity. Science, 2014, 344, 1090-1092.	6.0	449
4	Statistical inference for stochastic simulation models - theory and application. Ecology Letters, 2011, 14, 816-827.	3.0	320
5	Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 2014, 154, 102-114.	4.6	290
6	How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 2012, 39, 2146-2162.	1.4	249
7	Intraspecific trait variation across scales: implications for understanding global change responses. Global Change Biology, 2016, 22, 137-150.	4.2	238
8	Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Global Ecology and Biogeography, 2018, 27, 1004-1016.	2.7	211
9	Model averaging in ecology: a review of Bayesian, informationâ€theoretic, and tactical approaches for predictive inference. Ecological Monographs, 2018, 88, 485-504.	2.4	209
10	The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends in Ecology and Evolution, 2019, 34, 211-223.	4.2	151
11	Connecting dynamic vegetation models to data – an inverse perspective. Journal of Biogeography, 2012, 39, 2240-2252.	1.4	144
12	Mechanistic simulation models in macroecology and biogeography: stateâ€ofâ€art and prospects. Ecography, 2017, 40, 267-280.	2.1	127
13	A model with many small shifts for estimating species-specific diversification rates. Nature Ecology and Evolution, 2019, 3, 1086-1092.	3.4	96
14	Heavy and frequent thinning promotes drought adaptation in <i>Pinus sylvestris</i> forests. Ecological Applications, 2016, 26, 2190-2205.	1.8	95
15	Tree mortality submodels drive simulated longâ€ŧerm forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 2019, 10, e02616.	1.0	93
16	Machine learning algorithms to infer traitâ€matching and predict species interactions in ecological networks. Methods in Ecology and Evolution, 2020, 11, 281-293.	2.2	82
17	Functional flower traits and their diversity drive pollinator visitation. Oikos, 2017, 126, 1020-1030.	1.2	80
18	Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. Forest Ecology and Management, 2013, 289, 255-268.	1.4	79

#	Article	IF	CITATIONS
19	Smart spatial incentives for market-based conservation. Biological Conservation, 2009, 142, 779-788.	1.9	78
20	Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Global Change Biology, 2019, 25, 1089-1105.	4.2	72
21	Ecological and economic conditions and associated institutional challenges for conservation banking in dynamic landscapes. Landscape and Urban Planning, 2014, 130, 64-72.	3.4	70
22	Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?. Ecological Modelling, 2016, 326, 63-74.	1.2	66
23	Explainable artificial intelligence enhances the ecological interpretability of blackâ€box species distribution models. Ecography, 2021, 44, 199-205.	2.1	64
24	Biodiversity conservation in dynamic landscapes: tradeâ€offs between number, connectivity and turnover of habitat patches. Journal of Applied Ecology, 2011, 48, 1227-1235.	1.9	60
25	Towards a New Generation of Trait-Flexible Vegetation Models. Trends in Ecology and Evolution, 2020, 35, 191-205.	4.2	59
26	Available and missing data to model impact of climate change on European forests. Ecological Modelling, 2020, 416, 108870.	1.2	58
27	Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 229-241.	1.4	56
28	The total dispersal kernel: a review and future directions. AoB PLANTS, 2019, 11, plz042.	1.2	56
29	Assessing the response of forest productivity to climate extremes in Switzerland using model–data fusion. Global Change Biology, 2020, 26, 2463-2476.	4.2	54
30	gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity. PLoS Biology, 2021, 19, e3001340.	2.6	54
31	Plant species richness increases with light availability, but not variability, in temperate forests understorey. BMC Ecology, 2020, 20, 43.	3.0	53
32	Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry, 2016, 89, 69-81.	1.2	52
33	Conserving biodiversity with tradable permits under changing conservation costs and habitat restoration time lags. Ecological Economics, 2011, 70, 533-541.	2.9	50
34	A Minimal Model for the Latitudinal Diversity Gradient Suggests a Dominant Role for Ecological Limits. American Naturalist, 2019, 194, E122-E133.	1.0	41
35	Stay by thy neighbor? Social organization determines the efficiency of biodiversity markets with spatial incentives. Ecological Complexity, 2010, 7, 91-99.	1.4	40
36	Siberian plants shift their phenology in response to climate change. Global Change Biology, 2021, 27, 4435-4448.	4.2	40

#	Article	IF	Citations
37	Do roe deer react to wildlife warning reflectors? A test combining a controlled experiment with field observations. European Journal of Wildlife Research, 2017, 63, 1.	0.7	34
38	Is Variation in Conspecific Negative Density Dependence Driving Tree Diversity Patterns at Large Scales?. Trends in Ecology and Evolution, 2021, 36, 151-163.	4.2	34
39	The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 2020, 12, 1295-1320.	3.7	33
40	Studying speciation and extinction dynamics from phylogenies: addressing identifiability issues. Trends in Ecology and Evolution, 2022, 37, 497-506.	4.2	33
41	EcoTRADE – A multi-player network game of a tradable permit market for biodiversity credits. Environmental Modelling and Software, 2010, 25, 1479-1480.	1.9	32
42	Parameter and uncertainty estimation for processâ€oriented population and distribution models: data, statistics and the niche. Journal of Biogeography, 2012, 39, 2225-2239.	1.4	32
43	Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. Forest Ecology and Management, 2017, 404, 100-107.	1.4	32
44	Rapid changes in seed dispersal traits may modify plant responses to global change. AoB PLANTS, 2019, 11, plz020.	1.2	32
45	Environmental heterogeneity predicts global species richness patterns better than area. Global Ecology and Biogeography, 2021, 30, 842-851.	2.7	32
46	The internal structure of metacommunities. Oikos, 2022, 2022, .	1.2	32
47	Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model. Biogeosciences, 2014, 11, 1261-1272.	1.3	31
48	Productivity of Fagus sylvatica under climate change – A Bayesian analysis of risk and uncertainty using the model 3-PG. Forest Ecology and Management, 2017, 401, 192-206.	1.4	31
49	Using synthetic data to evaluate the benefits of large field plots for forest biomass estimation with LiDAR. Remote Sensing of Environment, 2018, 213, 115-128.	4.6	31
50	The multi-dimensional nature of information drives prioritization of private over social information in ants. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191136.	1.2	31
51	Advancing an interdisciplinary framework to study seed dispersal ecology. AoB PLANTS, 2020, 12, plz048.	1.2	30
52	The Recruitment Niche Predicts Plant Community Assembly Across a Hydrological Gradient Along Plowed and Undisturbed Transects in a Former Agricultural Wetland. Frontiers in Plant Science, 2019, 10, 88.	1.7	28
53	Employing plant functional groups to advance seed dispersal ecology and conservation. AoB PLANTS, 2019, 11, plz006.	1.2	27
54	A new joint species distribution model for faster and more accurate inference of species associations from big community data. Methods in Ecology and Evolution, 2021, 12, 2159-2173.	2.2	27

#	Article	IF	CITATIONS
55	Inferring species interactions using Granger causality and convergent cross mapping. Theoretical Ecology, 2021, 14, 87-105.	0.4	26
56	Linking functional traits and demography to model species-rich communities. Nature Communications, 2021, 12, 2724.	5.8	26
57	Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Scientific Reports, 2019, 9, 10015.	1.6	24
58	r3PG – An <scp>r</scp> package for simulating forest growth using the 3â€PG processâ€based model. Methods in Ecology and Evolution, 2020, 11, 1470-1475.	2.2	24
59	Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest. Forest Ecology and Management, 2019, 449, 117448.	1.4	23
60	Lastâ€eentury forest productivity in a managed dryâ€edge Scots pine population: the two sides of climate warming. Ecological Applications, 2018, 28, 95-105.	1.8	22
61	Towards robust statistical inference for complex computer models. Ecology Letters, 2021, 24, 1251-1261.	3.0	22
62	Climateâ€driven, but dynamic and complex? A reconciliation of competing hypotheses for species' distributions. Ecology Letters, 2022, 25, 38-51.	3.0	20
63	Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	19
64	Calibrating an individualâ€based movement model to predict functional connectivity for little owls. Ecological Applications, 2019, 29, e01873.	1.8	19
65	The Minimum Detectable Difference (MDD) Concept for Establishing Trust in Nonsignificant Results: A Critical Review. Environmental Toxicology and Chemistry, 2020, 39, 2109-2123.	2.2	18
66	Does model-free forecasting really outperform the true model?. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3975.	3.3	16
67	A comparison of methods for estimating plant population size. Biodiversity and Conservation, 2018, 27, 2021-2028.	1.2	16
68	On the Challenge of Fitting Tree Size Distributions in Ecology. PLoS ONE, 2013, 8, e58036.	1.1	15
69	Bayesian inference of environmental and biotic factors determining the occurrence of the grapevine disease â€~bois noir'. Ecosphere, 2015, 6, 1-13.	1.0	14
70	An extended empirical saddlepoint approximation for intractable likelihoods. Electronic Journal of Statistics, $2018,12,.$	0.4	12
71	Bayesian calibration of a growthâ€dependent tree mortality model to simulate the dynamics of European temperate forests. Ecological Applications, 2020, 30, e02021.	1.8	12
72	The time horizon and its role in multiple species conservation planning. Biological Conservation, 2008, 141, 2625-2631.	1.9	11

#	Article	IF	CITATIONS
73	Identifying local drivers of a vector-pathogen-disease system using Bayesian modeling. Basic and Applied Ecology, 2017, 18, 75-85.	1.2	11
74	The influence of camera trap flash type on the behavioural reactions and trapping rates of red deer and roe deer. Remote Sensing in Ecology and Conservation, 2020, 6, 399-410.	2.2	11
75	Sequential Monte-Carlo algorithms for Bayesian model calibration – A review and method comparison✰. Ecological Modelling, 2021, 455, 109608.	1.2	10
76	Process, correlation and parameter fitting in species distribution models: a response to Kriticos <i>etÂal</i> . Journal of Biogeography, 2013, 40, 612-613.	1.4	8
77	On the Sympatric Evolution and Evolutionary Stability of Coexistence by Relative Nonlinearity of Competition. PLoS ONE, 2014, 9, e94454.	1.1	8
78	An R package facilitating sensitivity analysis, calibration and forward simulations with the LPJ-GUESS dynamic vegetation model. Environmental Modelling and Software, 2019, 111, 55-60.	1.9	7
79	The evidence contained in the P-value is context dependent. Trends in Ecology and Evolution, 2022, 37, 569-570.	4.2	7
80	Species and genetic diversity patterns show different responses to land use intensity in central European grasslands. Diversity and Distributions, 2021, 27, 392-401.	1.9	4
81	Offsetting Policies for Biodiversity Conservation. Developments in Environmental Modelling, 2012, , 413-430.	0.3	1
82	The NUCOMBog R package for simulating vegetation, water, carbon and nitrogen dynamics in peatlands. Ecological Informatics, 2017, 40, 35-39.	2.3	1
83	Calibrating an Individualâ€Based Movement Model to Predict Functional Connectivity for Little Owls. Bulletin of the Ecological Society of America, 2019, 100, e01541.	0.2	O