Monika Kordowska-Wiater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5389660/publications.pdf

Version: 2024-02-01

687363 610901 32 601 13 24 citations g-index h-index papers 33 33 33 727 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Biological Control of Fusarium culmorum, Fusarium graminearum and Fusarium poae by Antagonistic Yeasts. Pathogens, 2022, 11, 86.	2.8	21
2	Reduction of the Fusarium Mycotoxins: Deoxynivalenol, Nivalenol and Zearalenone by Selected Non-Conventional Yeast Strains in Wheat Grains and Bread. Molecules, 2022, 27, 1578.	3.8	13
3	A Metagenetic Insight into Microbial Diversity of Spontaneously Fermented Polish Red Wines and an Analysis of Selected Physicochemical Properties. Applied Sciences (Switzerland), 2022, 12, 4373.	2.5	3
4	Spicy Herb Extracts as a Potential Improver of the Antioxidant Properties and Inhibitor of Enzymatic Browning and Endogenous Microbiota Growth in Stored Mung Bean Sprouts. Antioxidants, 2021, 10, 425.	5.1	4
5	Probiotic and Potentially Probiotic Yeasts—Characteristics and Food Application. Foods, 2021, 10, 1306.	4.3	62
6	Effect of cold storage on the potentially bioaccessible isoflavones and antioxidant activities of soybean sprouts enriched with Lactobacillus plantarum 299v. LWT - Food Science and Technology, 2020, 118, 108820.	5 . 2	6
7	Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocolloids, 2020, 101, 105539.	10.7	47
8	Effect of Basil Leaves and Wheat Bran Water Extracts on Antioxidant Capacity, Sensory Properties and Microbiological Quality of Shredded Iceberg Lettuce during Storage. Antioxidants, 2020, 9, 355.	5.1	10
9	Molecular Routes to Specific Identification of the Lactobacillus Casei Group at the Species, Subspecies and Strain Level. International Journal of Molecular Sciences, 2020, 21, 2694.	4.1	18
10	Physiological, qualitative, and microbiological changes of minimally processed Brussels sprouts in response to coating with carboxymethyl cellulose/candelilla wax emulsion. Journal of Food Processing and Preservation, 2019, 43, e14004.	2.0	15
11	Genomic and Proteomic Characterization of Bacteriophage BH1 Spontaneously Released from Probiotic Lactobacillus rhamnosus Pen. Viruses, 2019, 11, 1163.	3.3	8
12	Nutritional and pro-health quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT - Food Science and Technology, 2019, 100, 220-226.	5. 2	33
13	Microbiome Of The Women'S Genital System. Postepy Mikrobiologii, 2019, 58, 227-236.	0.1	6
14	Antifungal resistance and physicochemical attributes of apricots coated with potassium sorbateã€added carboxymethyl celluloseâ€based emulsion. International Journal of Food Science and Technology, 2018, 53, 728-734.	2.7	13
15	Improvement of Candida parapsilosis by genome shuffling for the efficient production of arabitol from l-arabinose. Food Science and Biotechnology, 2018, 27, 1395-1403.	2.6	8
16	Lactobacillus plantarum 299V improves the microbiological quality of legume sprouts and effectively survives in these carriers during cold storage and in vitro digestion. PLoS ONE, 2018, 13, e0207793.	2.5	19
17	Effect of carboxymethylcellulose/candelilla wax coating containing potassium sorbate on microbiological and physicochemical attributes of pears. Scientia Horticulturae, 2017, 218, 326-333.	3.6	36
18	The production of arabitol by a novel plant yeast isolate Candida parapsilosis 27RL-4. Open Life Sciences, 2017, 12, 326-336.	1.4	6

#	Article	IF	CITATIONS
19	The Ability of a Novel Strain <i>Scheffersomyces</i> (Syn. <i>Candida</i>) <i>shehatae</i> Isolated from Rotten Wood to Produce Arabitol. Polish Journal of Microbiology, 2017, 66, 335-343.	1.7	9
20	Applying sprouts of selected legumes as carriers for Lactobacillus rhamnosus GG – screening studies. Å»ywnoÅ,ć, 2017, 113, 37-47.	0.1	2
21	Production of arabitol by yeasts: current status and future prospects. Journal of Applied Microbiology, 2015, 119, 303-314.	3.1	70
22	The occurrence of killer activity in yeasts isolated from natural habitats. Acta Biochimica Polonica, 2015, 62, 821-824.	0.5	4
23	Influence of Elicitation and Germination Conditions on Biological Activity of Wheat Sprouts. Journal of Chemistry, 2015, 2015, 1-8.	1.9	28
24	Physicochemical and Antimicrobial Properties of Biopolymer-Candelilla Wax Emulsion Films Containing Potassium Sorbate – A Comparative Study. Food and Bioprocess Technology, 2015, 8, 567-579.	4.7	31
25	Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin. International Journal of Biological Macromolecules, 2015, 77, 350-359.	7. 5	68
26	Application of response surface methodology for the optimization of arabinose biotransformation to arabitol by Candida parapsilosis. Open Life Sciences, 2013, 8, 835-842.	1.4	4
27	Optimization of Arabitol Production by Karyoductant SP-K 7 of Saccharomyces cerevisiae V30 and Pichia stipitis CCY 39501 Using Response Surface Methodology. Polish Journal of Microbiology, 2012, 61, 291-297.	1.7	4
28	Optimization of arabitol production by karyoductant SP-K 7 of S. cerevisiae V30 and P. stipitis CCY 39501 using response surface methodology. Polish Journal of Microbiology, 2012, 61, 291-7.	1.7	0
29	Application of response surface methodology to enhancement of biomass production by Lactobacillus rhamnosus E/N. Brazilian Journal of Microbiology, 2011, 42, 1485-1494.	2.0	10
30	Spirulina enhances the viability of Lactobacillus rhamnosus E/N after freeze-drying in a protective medium of sucrose and lactulose. Letters in Applied Microbiology, 2011, 53, 79-83.	2.2	8
31	The Plackett-Burman design in optimization of media components for biomass production of Lactobacillus rhamnosusOXY. Acta Biologica Hungarica, 2010, 61, 344-355.	0.7	10
32	Optimization of Medium Composition for Enhancing Growth of Lactobacillus rhamnosus PEN Using Response Surface Methodology. Polish Journal of Microbiology, 2010, 59, 113-118.	1.7	22