Seyyed Amir Siadati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5389629/publications.pdf

Version: 2024-02-01

840119 794141 30 424 11 19 citations g-index h-index papers 30 30 30 231 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Urgent Industrial Scheme Both for Total Synthesis, and for Pharmaceutical Analytical Analysis of Umifenovir as an Anti-viral API for Treatment of COVID-19. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 838-846.	0.6	7
2	An unexpected aerobic oxidation of α-amino boronic acid part of Borteomib, leading to (thermal) decomposition of this very expensive anti-cancer API. Current Chemistry Letters, 2022, 11, 227-236.	0.5	1
3	Development and validation of a short runtime method for separation of trace amounts of 4-aminophenol, phenol, 3-nitrosalicylic acid and mesalamine by using HPLC system. Current Chemistry Letters, 2021, , 151-160.	0.5	4
4	Development and validation of a reversed-phase HPLC method for determination of assay content of Teriflunomide by the aid of BOMD simulations. Current Chemistry Letters, 2021, , 281-294.	0.5	5
5	A [1 + 2] cycloaddition instead of usual [2 + 3] cycloaddition between the B ₁₂ Normalistic and methyl azide: Potential energy surface calculations and Born–Oppenheimer molecular dynamics simulations. Progress in Reaction Kinetics and Mechanism, 2020, 45, 146867831990058.	_{12< 1.1}	/sub>
6	Understanding the mechanism of the 1,3-dipolar cycloaddition reaction between a thioformaldehyde S-oxide and cyclobutadiene: Competition between the stepwise and concerted routes. Progress in Reaction Kinetics and Mechanism, 2019, 44, 213-221.	1.1	3
7	The concern of emergence of multi-station reaction pathways that might make stepwise the mechanism of the 1,3-dipolar cycloadditions of azides and alkynes. Journal of Molecular Structure, 2018, 1155, 58-64.	1.8	13
8	The possibility of using C 20 fullerene and graphene as semiconductor segments for detection, and destruction of cyanogen-chloride chemical agent. Journal of Molecular Graphics and Modelling, 2017, 75, 80-84.	1.3	16
9	Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta, 2017, 162, 505-510.	2.9	69
10	Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Synthetic Metals, 2016, 220, 606-611.	2.1	73
11	Beyond the Alternatives that Switch the Mechanism of the 1,3-Dipolar CyCloadditions from Concerted to Stepwise or Vice Versa: A Literature Review. Progress in Reaction Kinetics and Mechanism, 2016, 41, 331-344.	1.1	18
12	The possibility of sensing and inactivating the hazardous air pollutant species via adsorption and their $[2+3]$ cycloaddition reactions with C20 fullerene. Sensors and Actuators B: Chemical, 2016, 237, 591-596.	4.0	18
13	Investigation of the possibility of functionalization of C 20 fullerene by benzene via Diels–Alder reaction. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 55-59.	1.3	15
14	The Effect of Position Replacement of Functional Groups on the Stepwise character of 1,3â€Dipolar Reaction of a Nitrile Oxide and an Alkene. Helvetica Chimica Acta, 2016, 99, 273-280.	1.0	17
15	A Theoretical Study on Stepwise- and Concertedness of the Mechanism of 1,3-Dipolar Cycloaddition Reaction Between Tetra Amino Ethylene and Trifluoro Methyl Azide. Combinatorial Chemistry and High Throughput Screening, 2016, 19, 170-175.	0.6	14
16	A Theoretical Study on the Functionalisation Process of C ₁₈ NB Fullerene Through its Open [5,5] Cycloaddition with 4-Pyridine Nitrile Oxide. Progress in Reaction Kinetics and Mechanism, 2015, 40, 169-176.	1.1	8
17	Diels-Alder <i>versus</i> 1,3-dipolar cycloaddition pathways in the reaction of C ₂₀ fullerene and 2-furan nitrile oxide. Progress in Reaction Kinetics and Mechanism, 2015, 40, 383-390.	1.1	15
18	An example of a stepwise mechanism for the catalyst-free 1,3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Letters, 2015, 56, 4857-4863.	0.7	29

#	Article	IF	CITATIONS
19	Effect of Steric Congestion on the Stepwise Character and Synchronicity of a 1,3-Dipolar Reaction of a Nitrile Ylide and an Olefin. Journal of Chemical Research, 2015, 39, 640-644.	0.6	7
20	Synthesis of a New Class of Phosphonate Derivatives Using a Three Component Reaction of Trialkyl Phosphites or Triaryl Phosphites in Water. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1177-1182.	0.8	11
21	Synthesis of 9H-furo [2,3-f]Chromene Derivatives by Promoting ZnO Nanoparticles. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 872-880.	0.6	48
22	1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran. Chemical Papers, 2014, 68 , .	1.0	7
23	A Theoretical Study on the Reaction Pathways and the Mechanism of 1,3- Dipolar Cycloaddition of Vinyl Acetylene and Methyl Azide. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 703-708.	0.6	4
24	A Theoretical Study on the Reaction Pathways of the Solvent Free Reaction of Urea and Ortho-Phenylene Diamine. Letters in Organic Chemistry, 2014, 11, 345-349.	0.2	0
25	A DFT study on the effect of functional groups on the formation kinetics of 1,2,3-triazolo-1,4-benzoxazine via intramolecular 1,3-dipolar cycloaddition. Progress in Reaction Kinetics and Mechanism, 2013, 38, 191-196.	1.1	0
26	A DFT Study on the 1,3-Dipolar Cycloaddition of Benzonitrile Oxide and N-Ethylmaleimide. Progress in Reaction Kinetics and Mechanism, 2013, 38, 316-322.	1.1	0
27	A Theoretical Study of Substitution Effect on an Electrocyclization Reaction. Combinatorial Chemistry and High Throughput Screening, 2013, 16, 408-412.	0.6	2
28	A Density Functional Theory Study of Cyclization of Citronellal. Progress in Reaction Kinetics and Mechanism, 2012, 37, 173-182.	1.1	6
29	A DFT Study on the Cycloaddition of Dimethyl Acetylenedicarboxylate and 3,4-dihydroisoquinoline-N-oxide. Progress in Reaction Kinetics and Mechanism, 2012, 37, 436-441.	1.1	1
30	A Dft Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3,4–Dihydroisoquinoline-N-Oxide. Progress in Reaction Kinetics and Mechanism, 2011, 36, 252-258.	1.1	12