Cheol Seong Hwang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5389272/cheol-seong-hwang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 611
 27,155
 77
 142

 papers
 citations
 h-index
 g-index

 634
 30,256
 5.9
 7.17

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
611	Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. <i>Nature Nanotechnology</i> , 2010 , 5, 148-53	28.7	1672
610	Multifunctional wearable devices for diagnosis and therapy of movement disorders. <i>Nature Nanotechnology</i> , 2014 , 9, 397-404	28.7	1037
609	Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. <i>Journal of Applied Physics</i> , 2005 , 98, 033715	2.5	938
608	Emerging memories: resistive switching mechanisms and current status. <i>Reports on Progress in Physics</i> , 2012 , 75, 076502	14.4	733
607	Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. <i>Advanced Materials</i> , 2015 , 27, 1811-31	24	554
606	Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. <i>Nanotechnology</i> , 2011 , 22, 254002	3.4	463
605	Efficient CH3 NH3 PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. <i>Advanced Materials</i> , 2015 , 27, 4013-9	24	414
604	Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. <i>Applied Physics Letters</i> , 2013 , 102, 242905	3.4	352
603	A resistive memory in semiconducting BiFeOIthin-film capacitors. <i>Advanced Materials</i> , 2011 , 23, 1277-8	124	348
602	Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. <i>Applied Physics Letters</i> , 2007 , 91, 012907	3.4	348
601	Resistive switching materials for information processing. <i>Nature Reviews Materials</i> , 2020 , 5, 173-195	73.3	318
600	Identification of a determining parameter for resistive switching of TiO2 thin films. <i>Applied Physics Letters</i> , 2005 , 86, 262907	3.4	296
599	High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition. <i>Applied Physics Letters</i> , 2004 , 85, 4112-4114	3.4	280
598	Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application. <i>Applied Physics Letters</i> , 1995 , 67, 2819-2821	3.4	261
597	A Review of Three-Dimensional Resistive Switching Cross-Bar Array Memories from the Integration and Materials Property Points of View. <i>Advanced Functional Materials</i> , 2014 , 24, 5316-5339	15.6	259
596	Al-Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors. <i>Advanced Materials</i> , 2008 , 20, 1429-1435	24	248
595	Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. <i>Applied Physics Letters</i> , 2011 , 98, 103509	3.4	231

(2011-2014)

594	Thin HfxZr1-xO2 Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. <i>Advanced Energy Materials</i> , 2014 , 4, 1400610	21.8	221	
593	Review and perspective on ferroelectric HfO2-based thin films for memory applications. <i>MRS Communications</i> , 2018 , 8, 795-808	2.7	209	
592	Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films. <i>Applied Physics Letters</i> , 2007 , 90, 242906	3.4	198	
591	First-principles study on doping and phase stability of HfO2. <i>Physical Review B</i> , 2008 , 78,	3.3	193	
590	The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. <i>Applied Physics Letters</i> , 2014 , 104, 072901	3.4	191	
589	First-principles study of point defects in rutile TiO2\(\mathbb{B}\). Physical Review B, 2006, 73,	3.3	189	
588	Memristors for Energy-Efficient New Computing Paradigms. Advanced Electronic Materials, 2016 , 2, 160	000290	188	
587	An artificial nociceptor based on a diffusive memristor. <i>Nature Communications</i> , 2018 , 9, 417	17.4	183	
586	Origin of Subthreshold Swing Improvement in Amorphous Indium Gallium Zinc Oxide Transistors. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, H157		177	
585	Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. <i>Nanoscale</i> , 2017 , 9, 9973-9986	7.7	162	
584	Capacitors with an Equivalent Oxide Thickness of . <i>Advanced Functional Materials</i> , 2010 , 20, 2989-3003	15.6	160	
583	Bioresorbable Electronic Stent Integrated with Therapeutic Nanoparticles for Endovascular Diseases. <i>ACS Nano</i> , 2015 , 9, 5937-46	16.7	158	
582	Highly Uniform, Electroforming-Free, and Self-Rectifying Resistive Memory in the Pt/Ta2O5/HfO2-x/TiN Structure. <i>Advanced Functional Materials</i> , 2014 , 24, 5086-5095	15.6	157	
581	A comparative study on the electrical conduction mechanisms of (Ba0.5Sr0.5)TiO3 thin films on Pt and IrO2 electrodes. <i>Journal of Applied Physics</i> , 1998 , 83, 3703-3713	2.5	155	
580	A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. <i>Nanoscale</i> , 2016 , 8, 1383-9	7.7	153	
579	Highly improved uniformity in the resistive switching parameters of TiO2 thin films by inserting Ru nanodots. <i>Advanced Materials</i> , 2013 , 25, 1987-92	24	152	
578	Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric Hf x Zr 1 $\!$ I O 2 films. <i>Nano Energy</i> , 2015 , 12, 131-140	17.1	144	
577	A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. <i>Nanotechnology</i> , 2011 , 22, 254010	3.4	140	

576	The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. <i>Applied Physics Letters</i> , 2009 , 94, 122109	3.4	137
575	32 B2 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory. <i>Advanced Functional Materials</i> , 2013 , 23, 1440-1449	15.6	136
574	Improved Ferroelectric Switching Endurance of La-Doped HfZrO Thin Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 2701-2708	9.5	134
573	Pt/Ta2 O5 /HfO2- x /Ti resistive switching memory competing with multilevel NAND flash. <i>Advanced Materials</i> , 2015 , 27, 3811-6	24	134
572	Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. <i>Applied Physics Letters</i> , 2014 , 105, 192903	3.4	134
571	Effect of Zr Content on the Wake-Up Effect in Hf1-xZrxO2 Films. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 15466-75	9.5	132
57°	Low-Power, Self-Rectifying, and Forming-Free Memristor with an Asymmetric Programing Voltage for a High-Density Crossbar Application. <i>Nano Letters</i> , 2016 , 16, 6724-6732	11.5	131
569	Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. <i>Nature Materials</i> , 2018 , 17, 49-56	27	131
568	Thickness-dependent dielectric constants of (Ba,Sr)TiO3 thin films with Pt or conducting oxide electrodes. <i>Journal of Applied Physics</i> , 2002 , 92, 432-437	2.5	128
567	Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films. <i>Journal of Applied Physics</i> , 1999 , 85, 287-295	2.5	127
566	Low Temperature (. Journal of the Electrochemical Society, 2006 , 153, F69	3.9	126
565	Comparison between ZnO films grown by atomic layer deposition using H2O or O3 as oxidant. <i>Thin Solid Films</i> , 2005 , 478, 103-108	2.2	125
564	Nonvolatile Memory Materials for Neuromorphic Intelligent Machines. <i>Advanced Materials</i> , 2018 , 30, e1704729	24	121
563	Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. <i>Applied Physics Letters</i> , 2013 , 102, 112914	3.4	117
562	Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 6864-6872	7.1	116
561	Dielectric and electrical properties of sputter grown (Ba,Sr)TiO3 thin films. <i>Journal of Applied Physics</i> , 1999 , 86, 506-513	2.5	116
560	A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. <i>Nanotechnology</i> , 2010 , 21, 195201	3.4	113
559	Prospective of Semiconductor Memory Devices: from Memory System to Materials. <i>Advanced Electronic Materials</i> , 2015 , 1, 1400056	6.4	108

(2015-1998)

558	(Ba,Sr)TiO3 thin films for ultra large scale dynamic random access memory <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1998 , 56, 178-190	3.1	108
557	Novel high-Idielectrics for next-generation electronic devices screened by automated ab initio calculations. <i>NPG Asia Materials</i> , 2015 , 7, e190-e190	10.3	106
556	Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures. <i>Nanotechnology</i> , 2010 , 21, 305203	3.4	104
555	Influences of interfacial intrinsic low-dielectric layers on the dielectric properties of sputtered (Ba,Sr)TiO3 thin films. <i>Applied Physics Letters</i> , 2000 , 77, 124-126	3.4	104
554	Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films. <i>Nanoscale</i> , 2018 , 10, 716-725	7.7	103
553	Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 532-535	2.5	102
552	Metal oxide memories based on thermochemical and valence change mechanisms. <i>MRS Bulletin</i> , 2012 , 37, 131-137	3.2	102
551	Enhanced electrical properties of SrTiO3 thin films grown by atomic layer deposition at high temperature for dynamic random access memory applications. <i>Applied Physics Letters</i> , 2008 , 92, 222903	3.4	102
550	Resistive Switching in PtAl[sub 2]O[sub 3]IIiO[sub 2]Ru Stacked Structures. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, G343		102
549	Chemical interaction between atomic-layer-deposited HfO2 thin films and the Si substrate. <i>Applied Physics Letters</i> , 2002 , 81, 334-336	3.4	102
548	Chemical structure of the interface in ultrathin HfO2/Si films. Applied Physics Letters, 2004, 84, 1305-130	03.4	101
547	Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. <i>Applied Physics Letters</i> , 2014 , 105, 072902	3.4	99
546	Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant. <i>Journal of Applied Physics</i> , 2003 , 94, 3641-3647	2.5	98
545	Atomic Layer Deposition of SrTiO3 Thin Films with Highly Enhanced Growth Rate for Ultrahigh Density Capacitors. <i>Chemistry of Materials</i> , 2011 , 23, 2227-2236	9.6	96
544	Resistive switching memory: observations with scanning probe microscopy. <i>Nanoscale</i> , 2011 , 3, 490-502	7.7	96
543	Self-Limited Switching in Ta2O5/TaOx Memristors Exhibiting Uniform Multilevel Changes in Resistance. <i>Advanced Functional Materials</i> , 2015 , 25, 1527-1534	15.6	93
542	Study on the resistive switching time of TiO2 thin films. <i>Applied Physics Letters</i> , 2006 , 89, 012906	3.4	93
541	Study on the size effect in Hf0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling. <i>Applied Physics Letters</i> , 2015 , 107, 192907	3.4	92

540	Giant Negative Electrocaloric Effects of Hf Zr O Thin Films. <i>Advanced Materials</i> , 2016 , 28, 7956-7961	24	91
539	Interfacial reaction between chemically vapor-deposited HfO2 thin films and a HF-cleaned Si substrate during film growth and postannealing. <i>Applied Physics Letters</i> , 2002 , 80, 2368-2370	3.4	85
538	Atomic Layer Deposition of Ru Thin Films Using 2,4-(Dimethylpentadienyl)(ethylcyclopentadienyl)Ru by a Liquid Injection System. <i>Journal of the Electrochemical Society</i> , 2007 , 154, D95	3.9	83
537	Densification and Mechanical Properties of Titanium Diboride with Silicon Nitride as a Sintering Aid. Journal of the American Ceramic Society, 2004 , 82, 3037-3042	3.8	83
536	Thermal annealing effects on the structural and electrical properties of HfO2/Al2O3 gate dielectric stacks grown by atomic layer deposition on Si substrates. <i>Journal of Applied Physics</i> , 2003 , 94, 2563-257	1 ^{2.5}	81
535	Deposition and Electrical Characterization of Very ThinSrTiO3Films for Ultra Large Scale Integrated Dynamic Random Access Memory Application. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 5178-5183	1.4	77
534	Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment. <i>Applied Physics Letters</i> , 2011 , 99, 102103	3.4	76
533	Comparison between atomic-layer-deposited HfO2 films using O3 or H2O oxidant and Hf[N(CH3)2]4 precursor. <i>Applied Physics Letters</i> , 2004 , 85, 5953-5955	3.4	72
532	Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. <i>Journal of Applied Physics</i> , 2005 , 98, 113701	2.5	72
531	(In,Sn)2O3IIiO2II Schottky-type diode switch for the TiO2 resistive switching memory array. <i>Applied Physics Letters</i> , 2008 , 92, 162904	3.4	71
530	Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800522	6.4	71
529	Nociceptive Memristor. <i>Advanced Materials</i> , 2018 , 30, 1704320	24	69
528	Collective Motion of Conducting Filaments in Pt/n-Type TiO2/p-Type NiO/Pt Stacked Resistance Switching Memory. <i>Advanced Functional Materials</i> , 2011 , 21, 1587-1592	15.6	69
527	Improvement of the photo-bias stability of the ZnBnD field effect transistors by an ozone treatment. <i>Journal of Materials Chemistry</i> , 2012 , 22, 10994		67
526	Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. <i>Applied Physics Letters</i> , 2010 , 96, 152909	3.4	67
525	Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2010 , 22, 2850-2856	9.6	65
524	Chemically Conformal ALD of SrTiO[sub 3] Thin Films Using Conventional Metallorganic Precursors. Journal of the Electrochemical Society, 2005 , 152, C229	3.9	65
523	Stabilization of Tetragonal HfO2 under Low Active Oxygen Source Environment in Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2012 , 24, 3534-3543	9.6	64

(2008-2013)

522	Real-time identification of the evolution of conducting nano-filaments in TiO2 thin film ReRAM. <i>Scientific Reports</i> , 2013 , 3, 3443	4.9	64	
521	Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping. <i>Journal of Applied Physics</i> , 2019 , 125, 034101	2.5	64	
520	Electronic resistance switching in the Al/TiO(x)/Al structure for forming-free and area-scalable memory. <i>Nanoscale</i> , 2015 , 7, 11063-74	7.7	63	
519	Local structure and conduction mechanism in amorphous InCaInO films. <i>Applied Physics Letters</i> , 2009 , 94, 112112	3.4	63	
518	Atomic-layer-deposited Al2O3 thin films with thin SiO2 layers grown by in situ O3 oxidation. Journal of Applied Physics, 2004, 96, 2323-2329	2.5	63	
517	Fabrication and Electrical Characterization ofPt/(Ba,Sr)TiO3/PtCapacitors for Ultralarge-Scale Integrated Dynamic Random Access Memory Applications. <i>Japanese Journal of Applied Physics</i> , 1996, 35, 1548-1552	1.4	63	
516	Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric Hf0.5Zr0.5O2 thin films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6291-6300	7.1	62	
515	Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO/IPt cell. Nanotechnology, 2012, 23, 185202	3.4	62	
514	Growth Behavior of Al-Doped TiO2 Thin Films by Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2008 , 20, 3723-3727	9.6	62	
513	Transformation of the Crystalline Structure of an ALD TiO[sub 2] Film on a Ru Electrode by O[sub 3] Pretreatment. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, F5		62	
512	Influence of carrier injection on resistive switching of TiO2 thin films with Pt electrodes. <i>Applied Physics Letters</i> , 2006 , 89, 162912	3.4	62	
511	Atomic Layer Deposition of SrTiO3 Films with Cyclopentadienyl-Based Precursors for MetalInsulatorMetal Capacitors. <i>Chemistry of Materials</i> , 2013 , 25, 953-961	9.6	61	
510	Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magn[] filaments. Applied Physics Letters, 2011 , 98, 262901	3.4	60	
509	Growth Characteristics of Atomic Layer Deposited TiO[sub 2] Thin Films on Ru and Si Electrodes for Memory Capacitor Applications. <i>Journal of the Electrochemical Society</i> , 2005 , 152, C552	3.9	60	
508	Scale-up and optimization of HfO2-ZrO2 solid solution thin films for the electrostatic supercapacitors. <i>Nano Energy</i> , 2017 , 39, 390-399	17.1	59	
507	Leakage current of sol-gel derived Pb(Zr, Ti)O3 thin films having Pt electrodes. <i>Applied Physics Letters</i> , 1999 , 75, 3411-3413	3.4	59	
506	Time-Dependent Negative Capacitance Effects in Al2O3/BaTiO3 Bilayers. <i>Nano Letters</i> , 2016 , 16, 4375-8	1 1.5	59	
505	Atomic Layer Deposition of ZrO2 Thin Films with High Dielectric Constant on TiN Substrates. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, G9		57	

504	Titanium dioxide thin films for next-generation memory devices. <i>Journal of Materials Research</i> , 2013 , 28, 313-325	2.5	56
503	The Inlaid Al2O3 Tunnel Switch for Ultrathin Ferroelectric Films. <i>Advanced Materials</i> , 2009 , 21, 2870-287	7 5 4	56
502	Modeling of Negative Capacitance in Ferroelectric Thin Films. <i>Advanced Materials</i> , 2019 , 31, e1805266	24	55
501	Combined Atomic Layer and Chemical Vapor Deposition, and Selective Growth of Ge2Sb2Te5 Films on TiN/W Contact Plug. <i>Chemistry of Materials</i> , 2007 , 19, 4387-4389	9.6	55
500	Multicolor Changeable Optical Coating by Adopting Multiple Layers of Ultrathin Phase Change Material Film. <i>ACS Photonics</i> , 2016 , 3, 1265-1270	6.3	54
499	Reasons for obtaining an optical dielectric constant from the Poole E renkel conduction behavior of atomic-layer-deposited HfO[sub 2] films. <i>Applied Physics Letters</i> , 2005 , 86, 072903	3.4	54
498	Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in ZnBnD thin film transistors. <i>Applied Physics Letters</i> , 2011 , 98, 122110	3.4	53
497	Cyclic PECVD of Ge[sub 2]Sb[sub 2]Te[sub 5] Films Using Metallorganic Sources. <i>Journal of the Electrochemical Society</i> , 2007 , 154, H318	3.9	53
496	Correlation of the change in transfer characteristics with the interfacial trap densities of amorphous InCaInD thin film transistors under light illumination. <i>Applied Physics Letters</i> , 2011 , 98, 232102	3.4	52
495	Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping. <i>Chemistry of Materials</i> , 2010 , 22, 4175-4184	9.6	52
494	High-k properties of atomic-layer-deposited HfO2 films using a nitrogen-containing Hf[N(CH3)2]4 precursor and H2O oxidant. <i>Applied Physics Letters</i> , 2003 , 83, 5503-5505	3.4	51
493	Review of defect chemistry in fluorite-structure ferroelectrics for future electronic devices. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10526-10550	7.1	50
492	Influence of the oxygen concentration of atomic-layer-deposited HfO2 films on the dielectric property and interface trap density. <i>Applied Physics Letters</i> , 2005 , 86, 112907	3.4	50
491	Sub-Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments. <i>Advanced Functional Materials</i> , 2012 , 22, 192-199	15.6	49
490	Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures. <i>Chemistry of Materials</i> , 2017 , 29, 8100-8110	9.6	49
489	Atomic Layer Deposition and Electrical Properties of SrTiO[sub 3] Thin Films Grown Using Sr(C[sub 11]H[sub 19]O[sub 2])[sub 2], Ti(Oi-C[sub 3]H[sub 7])[sub 4], and H[sub 2]O. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G127	3.9	49
488	Thermodynamic Calculations and Metallorganic Chemical Vapor Deposition of Ruthenium Thin Films Using Bis(ethyl-Etyclopentadienyl)Ru for Memory Applications. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 1161	3.9	49
487	Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition. <i>Applied Physics Letters</i> , 2017 , 111, 132903	3.4	48

(2007-2016)

486	Epitaxial Brownmillerite Oxide Thin Films for Reliable Switching Memory. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7902-11	9.5	48	
485	Structure and electrical properties of Al-doped HfOland ZrOlfilms grown via atomic layer deposition on Mo electrodes. <i>ACS Applied Materials & District Research</i> , 2014, 6, 22474-82	9.5	48	
484	Chemical Vapor Deposition of Ru Thin Films with an Enhanced Morphology, Thermal Stability, and Electrical Properties Using a RuO4 Precursor. <i>Chemistry of Materials</i> , 2009 , 21, 207-209	9.6	48	
483	Preparation and Electrical Properties of SrTiO3Thin Films Deposited by Liquid Source Metal-Organic Chemical Vapor Deposition (MOCVD). <i>Japanese Journal of Applied Physics</i> , 1996 , 35, 4890-4895	1.4	48	
482	Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD. <i>Journal of Materials Research</i> , 1993 , 8, 1361-1367	2.5	48	
481	Preparation and characterization of ferroelectric HfZrO thin films grown by reactive sputtering. <i>Nanotechnology</i> , 2017 , 28, 305703	3.4	48	
480	Thickness effect of ultra-thin Ta2O5 resistance switching layer in 28 nm-diameter memory cell. <i>Scientific Reports</i> , 2015 , 5, 15965	4.9	47	
479	Structural properties and electronic structure of HfO2-ZrO2 composite films. <i>Physical Review B</i> , 2010 , 82,	3.3	47	
478	Improvement in the leakage current characteristic of metal-insulator-metal capacitor by adopting RuO2 film as bottom electrode. <i>Applied Physics Letters</i> , 2011 , 99, 022901	3.4	47	
477	Influence of Substrates on the Nucleation and Growth Behaviors of Ge2Sb2Te5 Films by Combined Plasma-Enhanced Atomic Layer and Chemical Vapor Deposition. <i>Chemistry of Materials</i> , 2009 , 21, 2386	-2396	47	
476	Atomic Layer Deposition of Al2O3 Thin Films from a 1-Methoxy-2-methyl-2-propoxide Complex of Aluminum and Water. <i>Chemistry of Materials</i> , 2005 , 17, 626-631	9.6	47	
475	Post-Annealing Effects on Fixed Charge and Slow/Fast Interface States of TiN/Al2O3/p-Si Metal D xideBemiconductor Capacitor. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, 1222-1226	1.4	47	
474	Orientation effects in chemical solution derived Pb(Zr0.3,Ti0.7)O3 thin films on ferroelectric properties. <i>Thin Solid Films</i> , 2002 , 416, 264-270	2.2	47	
473	Filamentary Resistive Switching Localized at Cathode Interface in NiO Thin Films. <i>Journal of the Electrochemical Society</i> , 2009 , 156, G213	3.9	46	
472	ZnO nanoparticle growth on single-walled carbon nanotubes by atomic layer deposition and a consequent lifetime elongation of nanotube field emission. <i>Applied Physics Letters</i> , 2007 , 90, 263104	3.4	46	
471	Effects of carbon residue in atomic layer deposited HfO2 films on their time-dependent dielectric breakdown reliability. <i>Applied Physics Letters</i> , 2007 , 90, 182907	3.4	46	
470	Plasma-Enhanced Atomic Layer Deposition of TiO[sub 2] and Al-Doped TiO[sub 2] Films Using N[sub 2]O and O[sub 2] Reactants. <i>Journal of the Electrochemical Society</i> , 2009 , 156, G138	3.9	45	
469	Impact of O3 feeding time on TiO2 films grown by atomic layer deposition for memory capacitor applications. <i>Journal of Applied Physics</i> , 2007 , 102, 024109	2.5	45	

468	SiO[sub 2] Incorporation Effects in Ge[sub 2]Sb[sub 2]Te[sub 5] Films Prepared by Magnetron Sputtering for Phase Change Random Access Memory Devices. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, G259		45
467	Highly Flexible Resistive Switching Memory Based on the Electronic Switching Mechanism in the Al/TiO/Al/Polyimide Structure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 1828-1835	9.5	44
466	Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO/Ti/Pt Nanosized ReRAM Devices. <i>ACS Applied Materials & Devices</i> , 2018, 10, 29766-29778	9.5	44
465	Properties of lanthanum oxide thin films deposited by cyclic chemical vapor deposition using tris(isopropyl-cyclopentadienyl)lanthanum precursor. <i>Journal of Applied Physics</i> , 2006 , 100, 024111	2.5	44
464	Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation. <i>Nano Letters</i> , 2017 , 17, 7796-7802	11.5	43
463	Influences of metal, non-metal precursors, and substrates on atomic layer deposition processes for the growth of selected functional electronic materials. <i>Coordination Chemistry Reviews</i> , 2013 , 257, 3154	-33176	43
462	Role of Ru nano-dots embedded in TiO2 thin films for improving the resistive switching behavior. <i>Applied Physics Letters</i> , 2010 , 97, 232904	3.4	43
461	In Situ Control of Oxygen Vacancies in TaO Thin Films via Plasma-Enhanced Atomic Layer Deposition for Resistive Switching Memory Applications. <i>ACS Applied Materials & Description</i> (2017), 9, 13286-13292	9.5	42
460	Ferroelectric domain wall memory with embedded selector realized in LiNbO single crystals integrated on Si wafers. <i>Nature Materials</i> , 2020 , 19, 1188-1194	27	42
459	Conformal Formation of (GeTe2)(1日)(Sb2Te3)x Layers by Atomic Layer Deposition for Nanoscale Phase Change Memories. <i>Chemistry of Materials</i> , 2012 , 24, 2099-2110	9.6	42
458	Improvements in Growth Behavior of CVD Ru Films on Film Substrates for Memory Capacitor Integration. <i>Journal of the Electrochemical Society</i> , 2005 , 152, C15	3.9	42
457	A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices. <i>Applied Physics Reviews</i> , 2019 , 6, 041403	17.3	41
456	Improvement in Photo-Bias Stability of High-Mobility Indium Zinc Oxide Thin-Film Transistors by Oxygen High-Pressure Annealing. <i>IEEE Electron Device Letters</i> , 2013 , 34, 894-896	4.4	41
455	Identification of the controlling parameter for the set-state resistance of a TiO2 resistive switching cell. <i>Applied Physics Letters</i> , 2010 , 96, 112904	3.4	41
454	Threshold switching in Si-As-Te thin film for the selector device of crossbar resistive memory. <i>Applied Physics Letters</i> , 2012 , 100, 123505	3.4	41
453	Dual conical conducting filament model in resistance switching TiO2 thin films. <i>Scientific Reports</i> , 2015 , 5, 7844	4.9	40
452	Effects of in-plane compressive stress on electrical properties of (Ba,Sr)TiO3 thin film capacitors prepared by on- and off-axis rf magnetron sputtering. <i>Applied Physics Letters</i> , 2003 , 83, 4387-4389	3.4	40
451	The current limit and self-rectification functionalities in the TiO/HfO resistive switching material system. <i>Nanoscale</i> , 2017 , 9, 11920-11928	7.7	39

(2008-2014)

450	Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering. <i>Scientific Reports</i> , 2014 , 4, 6230	4.9	38	
449	Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory. <i>Applied Physics Letters</i> , 2008 , 92, 142110	3.4	38	
448	What Will Come After V-NANDI/ertical Resistive Switching Memory?. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800914	6.4	38	
447	Dispersion in Ferroelectric Switching Performance of Polycrystalline HfZrO Thin Films. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	38	
446	Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure. <i>Scientific Reports</i> , 2016 , 6, 190	39 4.9	37	
445	A theoretical model for Schottky diodes for excluding the sneak current in cross bar array resistive memory. <i>Nanotechnology</i> , 2010 , 21, 385202	3.4	37	
444	Chemical Vapor Deposition of HfO[sub 2] Thin Films Using a Novel Carbon-Free Precursor: Characterization of the Interface with the Silicon Substrate. <i>Journal of the Electrochemical Society</i> , 2002 , 149, G89	3.9	37	
443	Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron-beam deposition. <i>Journal of Materials Research</i> , 1999 , 14, 2980-2985	2.5	37	
442	Morphotropic Phase Boundary of HfZr O Thin Films for Dynamic Random Access Memories. <i>ACS Applied Materials & Dynamic Random Access Memories.</i> 10, 42666-42673	9.5	37	
441	Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films. <i>Nanoscale</i> , 2016 , 8, 13898-907	7.7	36	
440	Study of the negative resistance phenomenon in transition metal oxide films from a statistical mechanics point of view. <i>Journal of Applied Physics</i> , 2006 , 100, 113724	2.5	36	
439	Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors. <i>Scientific Reports</i> , 2016 , 6, 20825	4.9	36	
438	Nucleation-Limited Ferroelectric Orthorhombic Phase Formation in Hf0.5Zr0.5O2 Thin Films. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800436	6.4	36	
437	Double-Layer-Stacked One Diode-One Resistive Switching Memory Crossbar Array with an Extremely High Rectification Ratio of 109. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700152	6.4	35	
436	Bipolar resistive switching behavior of an amorphous GeBbIIeIthin films with a Te layer. <i>Nanoscale</i> , 2015 , 7, 6340-7	7.7	35	
435	Four-Bits-Per-Cell Operation in an HfO -Based Resistive Switching Device. <i>Small</i> , 2017 , 13, 1701781	11	35	
434	Anomalous behavior of negative bias illumination stress instability in an indium zinc oxide transistor: A cation combinatorial approach. <i>Applied Physics Letters</i> , 2012 , 101, 092107	3.4	35	
433	Unusual transport characteristics of nitrogen-doped single-walled carbon nanotubes. <i>Applied Physics Letters</i> , 2008 , 93, 043113	3.4	35	

432	Textile Resistance Switching Memory for Fabric Electronics. <i>Advanced Functional Materials</i> , 2017 , 27, 1605593	15.6	34
431	Evolution of the shape of the conducting channel in complementary resistive switching transition metal oxides. <i>Nanoscale</i> , 2014 , 6, 2161-9	7.7	34
430	Growth of RuO2 Thin Films by Pulsed-Chemical Vapor Deposition Using RuO4 Precursor and 5% H2 Reduction Gas. <i>Chemistry of Materials</i> , 2010 , 22, 5700-5706	9.6	34
429	Resolving the Landauer paradox in ferroelectric switching by high-field charge injection. <i>Physical Review B</i> , 2009 , 80,	3.3	34
428	Electronic bipolar resistance switching in an anti-serially connected Pt/TiO2/Pt structure for improved reliability. <i>Nanotechnology</i> , 2012 , 23, 035201	3.4	34
427	Atomic layer deposition of hafnium oxide from tert-butoxytris(ethylmethylamido)hafnium and ozone: rapid growth, high density and thermal stability. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4324		34
426	Structurally and Electrically Uniform Deposition of High-k TiO[sub 2] Thin Films on a Ru Electrode in Three-Dimensional Contact Holes Using Atomic Layer Deposition. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, F59		34
425	Fluorite-structure antiferroelectrics. <i>Reports on Progress in Physics</i> , 2019 , 82, 124502	14.4	33
424	Substrate Dependent Growth Behaviors of Plasma-Enhanced Atomic Layer Deposited Nickel Oxide Films for Resistive Switching Application. <i>Chemistry of Materials</i> , 2012 , 24, 4675-4685	9.6	33
423	SiO2 doped Ge2Sb2Te5 thin films with high thermal efficiency for applications in phase change random access memory. <i>Nanotechnology</i> , 2011 , 22, 254005	3.4	33
422	Comparison of Properties of an Al[sub 2]O[sub 3] Thin Layers Grown with Remote O[sub 2] Plasma, H[sub 2]O, or O[sub 3] as Oxidants in an ALD Process for HfO[sub 2] Gate Dielectrics. <i>Journal of the Electrochemical Society</i> , 2005 , 152, F49	3.9	33
421	Fabrication of a Cu-Cone-Shaped Cation Source Inserted Conductive Bridge Random Access Memory and Its Improved Switching Reliability. <i>Advanced Functional Materials</i> , 2019 , 29, 1806278	15.6	33
420	Impedance spectroscopic analysis on effects of partial oxidation of TiN bottom electrode and microstructure of amorphous and crystalline HfO2 thin films on their bipolar resistive switching. <i>Nanoscale</i> , 2014 , 6, 6668-78	7.7	32
419	Spectroscopic investigation of the hole states in Ni-deficient NiO films. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4334	7.1	32
418	Spectroscopic evidence for limited carrier hopping interaction in amorphous ZnO thin film. <i>Applied Physics Letters</i> , 2009 , 95, 261903	3.4	32
417	Threshold resistive and capacitive switching behavior in binary amorphous GeSe. <i>Journal of Applied Physics</i> , 2012 , 111, 102807	2.5	32
416	Vertically integrated submicron amorphous-In2Ga2ZnO7 thin film transistor using a low temperature process. <i>Applied Physics Letters</i> , 2012 , 100, 203510	3.4	32
4 ¹ 5	Influences of a Crystalline Seed Layer during Atomic Layer Deposition of SrTiO[sub 3] Thin Films Using Ti(O-iPr)[sub 2](thd)[sub 2], Sr(thd)[sub 2], and H[sub 2]O. <i>Journal of the Electrochemical Society</i> , 2008 , 155, G253	3.9	32

414	Cation Composition Control of MOCVD (Ba,Sr)TiO[sub 3] Thin Films along the Capacitor Hole. <i>Journal of the Electrochemical Society</i> , 2002 , 149, G585	3.9	32
413	Transient Negative Capacitance Effect in Atomic-Layer-Deposited Al2O3/Hf0.3Zr0.7O2 Bilayer Thin Film. <i>Advanced Functional Materials</i> , 2019 , 29, 1808228	15.6	31
412	Impact of the cation composition on the electrical performance of solution-processed zinc tin oxide thin-film transistors. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 14026-36	9.5	31
411	Effect of oxygen partial pressure on the Fermi level of ZnO1⊠ films fabricated by pulsed laser deposition. <i>Applied Physics Letters</i> , 2010 , 96, 201907	3.4	31
410	Atomic Layer Deposition of TiO[sub 2] Films on Ru Buffered TiN Electrode for Capacitor Applications. <i>Journal of the Electrochemical Society</i> , 2009 , 156, G71	3.9	31
409	Property Changes of Aluminum Oxide Thin Films Deposited by Atomic Layer Deposition under Photon Radiation. <i>Journal of the Electrochemical Society</i> , 2006 , 153, F87	3.9	31
408	Relaxation oscillator-realized artificial electronic neurons, their responses, and noise. <i>Nanoscale</i> , 2016 , 8, 9629-40	7.7	31
407	Comprehensive Writing Margin Analysis and its Application to Stacked one Diode-One Memory Device for High-Density Crossbar Resistance Switching Random Access Memory. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600326	6.4	31
406	Performance Variation According to Device Structure and the Source/Drain Metal Electrode of a-IGZO TFTs. <i>IEEE Transactions on Electron Devices</i> , 2012 , 59, 3357-3363	2.9	30
405	. IEEE Transactions on Electron Devices, 2011 , 58, 2094-2103	2.9	30
404	Schottky diode with excellent performance for large integration density of crossbar resistive memory. <i>Applied Physics Letters</i> , 2012 , 100, 213508	3.4	30
403	Variations of the leakage current density and the dielectric constant of Pt/(Ba,Sr)TiO3/Pt capacitors by annealing under a N2 atmosphere. <i>Journal of Applied Physics</i> , 1999 , 85, 2431-2436	2.5	30
402	Understanding ferroelectric phase formation in doped HfO thin films based on classical nucleation theory. <i>Nanoscale</i> , 2019 , 11, 19477-19487	7.7	29
401	Improved Initial Growth Behavior of SrO and SrTiO3 Films Grown by Atomic Layer Deposition Using {Sr(demamp)(tmhd)}2 as Sr-Precursor. <i>Chemistry of Materials</i> , 2015 , 27, 3881-3891	9.6	29
400	Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures. <i>Scientific Reports</i> , 2016 , 6, 22216	4.9	29
399	Effects of O3 and H2O as oxygen sources on the atomic layer deposition of HfO2 gate dielectrics at different deposition temperatures. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 2558-2568	7.1	29
398	Reliability of neuronal information conveyed by unreliable neuristor-based leaky integrate-and-fire neurons: a model study. <i>Scientific Reports</i> , 2015 , 5, 9776	4.9	29
397	Resistance switching in epitaxial SrCoOx thin films. <i>Applied Physics Letters</i> , 2014 , 105, 063507	3.4	29

396	A positive temperature coefficient of resistivity effect from a paraelectric Pt/(Ba0.5,Sr0.5)TiO3/IrO2 thin-film capacitor. <i>Applied Physics Letters</i> , 1997 , 71, 371-373	3.4	29
395	Improvement of leakage current characteristics of Ba0.5Sr0.5TiO3 films by N2O plasma surface treatment. <i>Applied Physics Letters</i> , 1997 , 71, 3221-3223	3.4	29
394	Properties of Aluminum Nitride Thin Films Deposited by an Alternate Injection of Trimethylaluminum and Ammonia under Ultraviolet Radiation. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C229	3.9	29
393	Direct growth of single-walled carbon nanotubes on conducting ZnO films and its field emission properties. <i>Applied Physics Letters</i> , 2006 , 89, 113116	3.4	29
392	Metalorganic chemical vapor deposition of very thin Pb(Zr,Ti)O3 thin films at low temperatures for high-density ferroelectric memory applications. <i>Journal of Materials Research</i> , 2001 , 16, 3583-3591	2.5	29
391	Thermally induced voltage offsets in Pb(Zr,Ti)O3 thin films. <i>Applied Physics Letters</i> , 2000 , 77, 3036-3038	3.4	29
390	Emergence of Negative Capacitance in Multidomain Ferroelectric-Paraelectric Nanocapacitors at Finite Bias. <i>Advanced Materials</i> , 2016 , 28, 335-40	24	28
389	Deposition Characteristics of (Ba,Sr)TiO3Thin Films by Liquid Source Metal-Organic Chemical Vapor Deposition at Low Substrate Temperatures. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 6946-6952	1.4	28
388	Improved Electronic Performance of \$hbox{HfO}_{2}/ hbox{SiO}_{2}\$ Stacking Gate Dielectric on 4H SiC. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 3409-3413	2.9	28
387	Thermal stability of atomic-layer-deposited HfO2 thin films on the SiNx-passivated Si substrate. <i>Applied Physics Letters</i> , 2002 , 81, 3630-3632	3.4	28
386	X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells. ACS Nano, 2014 , 8, 1584-9	16.7	27
385	Influence of the Interconnection Line Resistance and Performance of a Resistive Cross Bar Array Memory. <i>Journal of the Electrochemical Society</i> , 2010 , 157, G211	3.9	27
384	Permittivity Enhanced Atomic Layer Deposited HfO2 Thin Films Manipulated by a Rutile TiO2 Interlayer. <i>Chemistry of Materials</i> , 2010 , 22, 4419-4425	9.6	27
383	Characteristics of Amorphous Bi[sub 2]Ti[sub 2]O[sub 7] Thin Films Grown by Atomic Layer Deposition for Memory Capacitor Applications. <i>Journal of the Electrochemical Society</i> , 2006 , 153, F20	3.9	27
382	Investigation of interface trap states in TiN/Al2O3/p-Si capacitor by deep level transient spectroscopy. <i>Applied Physics Letters</i> , 2003 , 82, 1066-1068	3.4	27
381	Protection of SrBi2Ta2O9 ferroelectric capacitors from hydrogen damage by optimized metallization for memory applications. <i>Applied Physics Letters</i> , 2000 , 77, 76-78	3.4	27
380	Fully Functional Logic-In-Memory Operations Based on a Reconfigurable Finite-State Machine Using a Single Memristor. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800189	6.4	26
379	Scanning probe based observation of bipolar resistive switching NiO films. <i>Applied Physics Letters</i> , 2010 , 97, 062909	3.4	26

378	Electronic structure of amorphous InGaO3(ZnO)0.5 thin films. <i>Thin Solid Films</i> , 2009 , 518, 1079-1081	2.2	26	
377	The mechanism for the suppression of leakage current in high dielectric TiO2 thin films by adopting ultra-thin HfO2 films for memory application. <i>Journal of Applied Physics</i> , 2011 , 110, 024105	2.5	26	
376	Growth and electrical properties of silicon oxide grown by atomic layer deposition using Bis(ethyl-methyl-amino)silane and ozone. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 01A126	2.9	26	
375	The Role of the Methyl and Hydroxyl Groups of Low-k Dielectric Films on the Nucleation of Ruthenium by ALD. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, H210		26	
374	Growth of ternary PbTiOx films in a combination of binary oxide atomic layer depositions. <i>Journal of Applied Physics</i> , 2007 , 101, 014114	2.5	26	
373	Liquid Injection ALD of Pb(Zr,Ti)O[sub x] Thin Films by a Combination of Self-Regulating Component Oxide Processes. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G262	3.9	26	
372	Interface potential barrier height and leakage current behavior of Pt/(Ba, Sr)TiO3/Pt capacitors fabricated by sputtering process. <i>Integrated Ferroelectrics</i> , 1996 , 13, 157-177	0.8	26	
371	High-Performance Thin-Film Transistors of Quaternary Indium-Zinc-Tin Oxide Films Grown by Atomic Layer Deposition. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 14892-14901	9.5	25	
370	Low Variability Resistor Memristor Circuit Masking the Actual Memristor States. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500095	6.4	25	
369	Chemical structures and electrical properties of atomic layer deposited HfO2 thin films grown at an extremely low temperature (100°C) using O3 as an oxygen source. <i>Applied Surface Science</i> , 2014 , 292, 852-856	6.7	25	
368	Understanding structure-property relationship of resistive switching oxide thin films using a conical filament model. <i>Applied Physics Letters</i> , 2010 , 97, 162912	3.4	25	
367	Role of Interfacial Reaction in Atomic Layer Deposition of TiO2 Thin Films Using Ti(O-iPr)2(tmhd)2 on Ru or RuO2 Substrates. <i>Chemistry of Materials</i> , 2011 , 23, 976-983	9.6	25	
366	Metallorganic Chemical Vapor Deposition of Ru Films Using Cyclopentadienyl-Propylcyclopentadienylruthenium(II) and Oxygen. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C317	3.9	25	
365	La-doped Hf0.5Zr0.5O2 thin films for high-efficiency electrostatic supercapacitors. <i>Applied Physics Letters</i> , 2018 , 113, 123902	3.4	25	
364	Uniform Self-rectifying Resistive Switching Behavior via Preformed Conducting Paths in a Vertical-type Ta2O5/HfO2-x Structure with a Sub-fh(2) Cell Area. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 18215-21	9.5	24	
363	Interfacial charge-induced polarization switching in Al2O3/Pb(Zr,Ti)O3 bi-layer. <i>Journal of Applied Physics</i> , 2015 , 118, 224105	2.5	24	
362	High-throughput fabrication of infinitely long 10 nm slit arrays for terahertz applications. <i>Journal of Infrared, Millimeter, and Terahertz Waves</i> , 2015 , 36, 262-268	2.2	24	
361	Growth of Conductive SrRuO3 Films by Combining Atomic Layer Deposited SrO and Chemical Vapor Deposited RuO2 Layers. <i>Chemistry of Materials</i> , 2012 , 24, 4686-4692	9.6	24	

360	Switching Power Reduction in Phase Change Memory Cell Using CVD Ge[sub 2]Sb[sub 2]Te[sub 5] and Ultrathin TiO[sub 2] Films. <i>Journal of the Electrochemical Society</i> , 2009 , 156, H59	3.9	24
359	Preparation and Characterization of Iridium Oxide Thin Films Grown by DC Reactive Sputtering. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 1722-1727	1.4	24
358	Growth Behavior of Atomic-Layer-Deposited Pb(Zr,Ti)O[sub x] Thin Films on Planar Substrate and Three-Dimensional Hole Structures. <i>Journal of the Electrochemical Society</i> , 2008 , 155, D715	3.9	24
357	Effects of plasma nitridation of Al2O3 interlayer on thermal stability, fixed charge density, and interfacial trap states of HfO2 gate dielectric films grown by atomic layer deposition. <i>Journal of Applied Physics</i> , 2003 , 94, 1898-1903	2.5	24
356	Thickness effects on imprint in chemical-solution-derived (Pb, La)(Zr, Ti)O3 thin films. <i>Applied Physics Letters</i> , 2001 , 78, 2885-2887	3.4	24
355	Atomic Layer Deposition of GeTe Films Using Ge{N[Si(CH3)3]2}2, {(CH3)3Si}2Te, and Methanol. <i>Chemistry of Materials</i> , 2016 , 28, 7158-7166	9.6	23
354	Hierarchical Domain Structure and Extremely Large Wall Current in Epitaxial BiFeO3 Thin Films. <i>Advanced Functional Materials</i> , 2018 , 28, 1801725	15.6	23
353	Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory. <i>Nanoscale</i> , 2017 , 9, 10502-10510	7.7	23
352	Evaluating the top electrode material for achieving an equivalent oxide thickness smaller than 0.4 nm from an Al-doped TiOlFilm. <i>ACS Applied Materials & District Materials & Di</i>	9.5	23
351	The Effects of Postdeposition Annealing on the Crystallization and Electrical Characteristics of HfO2 and ZrO2 Gate Dielectrics. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, G17		23
350	Novel post-process for the passivation of a CMOS biosensor. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 4-6	2.5	23
349	Influence of the oxygen concentration of atomic-layer-deposited HfO2 gate dielectric films on the electron mobility of polycrystalline-Si gate transistors. <i>Journal of Applied Physics</i> , 2006 , 99, 094501	2.5	23
348	Atomic Layer Deposition and Electrical Properties of PbTiO[sub 3] Thin Films Using Metallorganic Precursors and H[sub 2]O. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G69	3.9	23
347	Film-thickness-dependent Curie-Weiss behavior of (Ba,Sr)TiO3 thin-film capacitors having Pt electrodes. <i>Applied Physics Letters</i> , 2004 , 85, 5313-5315	3.4	23
346	Influence of the microstructure of Pt/Si substrates on textured growth of barium titanate thin films prepared by pulsed laser deposition. <i>Journal of Materials Research</i> , 1998 , 13, 368-375	2.5	23
345	Thermoelectric Performance of n-Type Bi2Te3/Cu Composites Fabricated by Nanoparticle Decoration and Spark Plasma Sintering. <i>Journal of Electronic Materials</i> , 2016 , 45, 1927-1934	1.9	23
344	Thin TiO layer as a voltage divider layer located at the quasi-Ohmic junction in the Pt/TaO/Ta resistance switching memory. <i>Nanoscale</i> , 2017 , 9, 2358-2368	7.7	22
343	Chemical interactions in the atomic layer deposition of GeBbBeIIe films and their ovonic threshold switching behavior. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5025-5032	7.1	22

(2011-2013)

342	Thermodynamic stability of various phases of zinc tin oxides from ab initio calculations. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6364	7.1	22
341	Theoretical and experimental studies on the electronic structure of crystalline and amorphous ZnSnO3 thin films. <i>Applied Physics Letters</i> , 2013 , 102, 242111	3.4	22
340	Monocliniclike local atomic structure in amorphous ZrO2 thin film. <i>Applied Physics Letters</i> , 2010 , 97, 14	19 ₃ 0 ₄ 5	22
339	Influence of exchange-correlation functionals on dielectric properties of rutile TiO2. <i>Current Applied Physics</i> , 2011 , 11, S293-S296	2.6	22
338	Improvement of thermal stability and composition changes of atomic layer deposited HfO2 on Si by in situ O3 pretreatment. <i>Applied Physics Letters</i> , 2007 , 90, 152906	3.4	22
337	Electrostatic force microscopy using a quartz tuning fork. <i>Applied Physics Letters</i> , 2002 , 80, 4324-4326	3.4	22
336	The fundamentals and applications of ferroelectric HfO2. Nature Reviews Materials,	73.3	22
335	Combined Ligand Exchange and Substitution Reactions in Atomic Layer Deposition of Conformal Ge2Sb2Te5 Film for Phase Change Memory Application. <i>Chemistry of Materials</i> , 2015 , 27, 3707-3713	9.6	21
334	Substrate Dependent Growth Rate of Plasma-Enhanced Atomic Layer Deposition of Titanium Oxide Using N[sub 2]O Gas. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, G13		21
333	Investigation of oxygen-related defects and the electrical properties of atomic layer deposited HfO2 films using electron energy-loss spectroscopy. <i>Journal of Applied Physics</i> , 2011 , 109, 023718	2.5	21
332	Pairing of cation vacancies and gap-state creation in TiO2 and HfO2. <i>Applied Physics Letters</i> , 2007 , 90, 252908	3.4	21
331	Highly sensitive flexible NO2 sensor composed of vertically aligned 2D SnS2 operating at room temperature. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11874-11881	7.1	21
330	Filament Shape Dependent Reset Behavior Governed by the Interplay between the Electric Field and Thermal Effects in the Pt/TiO2/Cu Electrochemical Metallization Device. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600404	6.4	20
329	Nanoscale characterization of TiO(2) films grown by atomic layer deposition on RuO(2) electrodes. <i>ACS Applied Materials & District ACS ACS APPLIED & District ACS ACS APPLIED & District ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	20
328	Study on Initial Growth Behavior of RuO2 Film Grown by Pulsed Chemical Vapor Deposition: Effects of Substrate and Reactant Feeding Time. <i>Chemistry of Materials</i> , 2012 , 24, 1407-1414	9.6	20
327	Surface redox induced bipolar switching of transition metal oxide films examined by scanning probe microscopy. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 102, 827-834	2.6	20
326	Electrical properties of TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes. <i>Microelectronic Engineering</i> , 2011 , 88, 1514-1516	2.5	20
325	Improved ferroelectric property of very thin Mn-doped BiFeO3 films by an inlaid Al2O3 tunnel switch. <i>Journal of Applied Physics</i> , 2011 , 110, 074111	2.5	20

324	The Impact of Carbon Concentration on the Crystalline Phase and Dielectric Constant of Atomic Layer Deposited HfO2Films on Ge Substrate. <i>ECS Journal of Solid State Science and Technology</i> , 2012 , 1, N33-N37	2	20
323	Structural and Electrical Properties of Ba0.5Sr0.5TiO3 Films on Ir and IrO2 Electrodes. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L874-L876	1.4	20
322	Enhanced Nucleation Behavior of Atomic-Layer-Deposited Ru Film on Low-k Dielectrics Afforded by UV-O[sub 3] Treatment. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, G5		20
321	Effect of O 2 Addition on the Deposition of Pt Thin Films by Metallorganic Chemical Vapor Deposition. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 1066-1069	3.9	20
320	A crossbar resistance switching memory readout scheme with sneak current cancellation based on a two-port current-mode sensing. <i>Nanotechnology</i> , 2016 , 27, 485201	3.4	19
319	Controlling the initial growth behavior of SrTiO3 films by interposing Al2O3 layers between the film and the Ru substrate. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15037		19
318	Influence of High Temperature Postdeposition Annealing on the Atomic Configuration in Amorphous Inta Int Electrochemical and Solid-State Letters, 2009, 12, H208		19
317	First-principles calculation of capacitance including interfacial effects. <i>Journal of Applied Physics</i> , 2008 , 103, 024106	2.5	19
316	Structural disorders in an amorphous HfO2 film probed by x-ray absorption fine structure analysis. <i>Physical Review B</i> , 2008 , 78,	3.3	19
315	Improved electrical performances of plasma-enhanced atomic layer deposited TaCxNy films by adopting Ar⊞2 plasma. <i>Applied Physics Letters</i> , 2007 , 91, 252106	3.4	19
314	Improvement in electrical insulating properties of 10-nm-thick Al2O3 film grown on Al/TiN/Si substrate by remote plasma annealing at low temperatures. <i>Applied Physics Letters</i> , 2002 , 80, 2734-273	6 ^{3.4}	19
313	Electrical conduction properties of sputter-grown (Ba, Sr)TiO3 thin films having IrO2 electrodes. <i>Applied Physics Letters</i> , 2000 , 76, 1609-1611	3.4	19
312	Degradation behavior in the remnant polarization of SrBi2Ta2O9 thin films by hydrogen annealing and its recovery by postannealing. <i>Applied Physics Letters</i> , 1999 , 75, 558-560	3.4	19
311	A Stateful Logic Family Based on a New Logic Primitive Circuit Composed of Two Antiparallel Bipolar Memristors. <i>Advanced Intelligent Systems</i> , 2020 , 2, 1900082	6	19
310	Synthesis of Large Area Two-Dimensional MoS2 Films by Sulfurization of Atomic Layer Deposited MoO3 Thin Film for Nanoelectronic Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 7521-7531	5.6	19
309	A study of the transition between the non-polar and bipolar resistance switching mechanisms in the TiN/TiO2/Al memory. <i>Nanoscale</i> , 2016 , 8, 16455-66	7.7	18
308	Influence of the Kinetic Adsorption Process on the Atomic Layer Deposition Process of (GeTe2)(11)(Sb2Te3)x Layers Using Ge4+14(koxide Precursors. <i>Chemistry of Materials</i> , 2014 , 26, 1583-159	99.6	18
307	The impact of orbital hybridization on the electronic structure of crystalline InGaZnO: a new perspective on the compositional dependence. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9196-9204	7.1	18

(2011-2014)

306	Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 7910-7	9.5	18	
305	Atomic Layer Deposition of GeTe and GeBbIIe Films Using HGeCl3, Sb(OC2H5)3, and {(CH3)3Si}2Te and Their Reaction Mechanisms. <i>Chemistry of Materials</i> , 2017 , 29, 8065-8072	9.6	18	
304	Indium tin oxide/InGaZnO bilayer stacks for enhanced mobility and optical stability in amorphous oxide thin film transistors. <i>Applied Physics Letters</i> , 2014 , 105, 013508	3.4	18	
303	Ionic bipolar resistive switching modes determined by the preceding unipolar resistive switching reset behavior in Pt/TiO2/Pt. <i>Nanotechnology</i> , 2013 , 24, 145201	3.4	18	
302	Tristate Memory Using FerroelectricInsulatorBemiconductor Heterojunctions for 50% Increased Data Storage. <i>Advanced Functional Materials</i> , 2011 , 21, 4305-4313	15.6	18	
301	Botryoidal growth of crystalline ZnO nanoparticles on a forest of single-walled carbon nanotubes by atomic layer deposition. <i>CrystEngComm</i> , 2011 , 13, 3451	3.3	18	
300	Effect of catalyst layer density and growth temperature in rapid atomic layer deposition of silica using tris(tert-pentoxy)silanol. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 1633-9	9.5	18	
299	The charge trapping characteristics of Si3N4 and Al2O3 layers on amorphous-indium-gallium-zinc oxide thin films for memory application. <i>Applied Physics Letters</i> , 2012 , 100, 183503	3.4	18	
298	Variation of Electrical Conduction Phenomena of Pt/(Ba,Sr)TiO3/Pt Capacitors by Different Top Electrode Formation Processes. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 5860-5865	1.4	18	
297	Liquid Injection Atomic Layer Deposition of TiO[sub x] Films Using Ti[OCH(CH[sub 3])[sub 2]][sub 4]. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G134	3.9	18	
296	A Comparative Study on the Ferroelectric Performances in Atomic Layer Deposited HfZrO Thin Films Using Tetrakis(ethylmethylamino) and Tetrakis(dimethylamino) Precursors. <i>Nanoscale Research Letters</i> , 2020 , 15, 72	5	18	
295	Defect-Engineered Electroforming-Free Analog HfO Memristor and Its Application to the Neural Network. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 47063-47072	9.5	18	
294	Roles of conducting filament and non-filament regions in the TaO and HfO resistive switching memory for switching reliability. <i>Nanoscale</i> , 2017 , 9, 6010-6019	7.7	17	
293	Controlling the thin interfacial buffer layer for improving the reliability of the Ta/Ta2O5/Pt resistive switching memory. <i>Applied Physics Letters</i> , 2018 , 113, 072902	3.4	17	
292	Thickness-dependent electroforming behavior of ultra-thin Ta2O5 resistance switching layer. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 362-365	2.5	17	
291	Gate Engineering in TiN/La/TiN and TiLaN Metal Layers on Atomic-Layer-Deposited \$hbox{HfO}_{2}/hbox{Si}\$. <i>IEEE Electron Device Letters</i> , 2012 , 33, 955-957	4.4	17	
29 0	Controlling work function and damaging effects of sputtered RuOlbate electrodes by changing oxygen gas ratio during sputtering. ACS Applied Materials & Interfaces, 2013, 5, 1327-32	9.5	17	
289	Improved Growth and Electrical Properties of Atomic-Layer-Deposited Metal-Oxide Film by Discrete Feeding Method of Metal Precursor. <i>Chemistry of Materials</i> , 2011 , 23, 1654-1658	9.6	17	

288	Effective work function tunability and interfacial reactions with underlying HfO2 layer of plasma-enhanced atomic layer deposited TaCxNy films. <i>Applied Physics Letters</i> , 2008 , 92, 202902	3.4	17
287	Liquid-Injection Atomic Layer Deposition of TiO[sub x] and PbIIiD Films. <i>Journal of the Electrochemical Society</i> , 2006 , 153, F199	3.9	17
286	Deposition Characteristics and Annealing Effect of La[sub 2]O[sub 3] Films Prepared Using La(iPrCp)[sub 3] Precursor. <i>Journal of the Electrochemical Society</i> , 2007 , 154, G49	3.9	17
285	Improved Nucleation Behavior of Ru Thin Films Prepared by MOCVD on TiCl[sub 4] Pretreated Substrates. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, D113		17
284	Polarity-dependent rejuvenation of ferroelectric properties of integrated SrBi2Ta2O9 capacitors by electrical stressing. <i>Applied Physics Letters</i> , 2000 , 76, 324-326	3.4	17
283	Single-Cell Stateful Logic Using a Dual-Bit Memristor. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800629	2.5	17
282	InGaZnO oxide semiconductor based charge trap device for NAND flash memory. <i>Nanotechnology</i> , 2018 , 29, 155203	3.4	16
281	Advanced memoryMaterials for a new era of information technology. MRS Bulletin, 2018, 43, 330-333	3.2	16
280	Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior. <i>Physica Status Solidi - Rapid Research Letters</i> , 2014 , 8, 857-861	2.5	16
279	Study on the defects in metalBrganic chemical vapor deposited zinc tin oxide thin films using negative bias illumination stability analysis. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6695	7.1	16
278	Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	16
277	The reason for the increased threshold switching voltage of SiO2 doped Ge2Sb2Te5 thin films for phase change random access memory. <i>Applied Physics Letters</i> , 2009 , 95, 112110	3.4	16
276	The effects of device geometry on the negative bias temperature instability of Hf-In-Zn-O thin film transistors under light illumination. <i>Applied Physics Letters</i> , 2011 , 98, 023507	3.4	16
275	Local Epitaxial Growth of Ru Thin Films by Atomic Layer Deposition at Low Temperature. <i>Journal of the Electrochemical Society</i> , 2011 , 158, D477	3.9	16
274	Study of the Reliability Impact of Chlorine Precursor Residues in Thin Atomic-Layer-Deposited \$hbox{HfO}_{2}\$ Layers. <i>IEEE Transactions on Electron Devices</i> , 2007 , 54, 752-758	2.9	16
273	Resistance switching behavior of atomic layer deposited SrTiO3 film through possible formation of Sr2Ti6O13 or Sr1Ti11O20 phases. <i>Scientific Reports</i> , 2016 , 6, 20550	4.9	16
272	Quantitative Analysis of the Incorporation Behaviors of Sr and Ti Atoms During the Atomic Layer Deposition of SrTiO Thin Films. <i>ACS Applied Materials & Deposition of Section 2018</i> , 10, 8836-8844	9.5	15
271	The Electrical Properties of Asymmetric Schottky Contact Thin-Film Transistors with Amorphous-\$hbox{In}_{2}hbox{Ga}_{2}hbox{ZnO}_{7}\$. IEEE Transactions on Electron Devices, 2013, 60, 1128-1135	2.9	15

270	Ta-Doped SnO2 as a reductiondesistant oxide electrode for DRAM capacitors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9405-9411	7.1	15	
269	Chemistry of active oxygen in RuOx and its influence on the atomic layer deposition of TiO2 films. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9993-10001	7.1	15	
268	Improvement in the negative bias illumination temperature stress instability of Intaznt thin film transistors using an Al2O3 buffer layer. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 178-1	80 ⁵	15	
267	Growth and Phase Separation Behavior in Ge-Doped Sble Thin Films Deposited by Combined Plasma-Enhanced Chemical Vapor and Atomic Layer Depositions. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 17899-17904	3.8	15	
266	Reduced Electrical Defects and Improved Reliability of Atomic-Layer-Deposited HfO[sub 2] Dielectric Films by In Situ NH[sub 3] Injection. <i>Journal of the Electrochemical Society</i> , 2009 , 156, G48	3.9	15	
265	Electronic Conduction Mechanism of SrTiO[sub 3] Thin Film Grown on Ru Electrode by Atomic Layer Deposition. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, G69		15	
264	Properties of Atomic Layer Deposited HfO2Films on Ge Substrates Depending on Process Temperatures. <i>Journal of the Electrochemical Society</i> , 2012 , 159, G33-G39	3.9	15	
263	Dependency of threshold switching on density of localized states of Ge2Sb2Te5 thin films for phase change random access memory. <i>Applied Physics Letters</i> , 2008 , 93, 172114	3.4	15	
262	Dependences of nitrogen incorporation behaviors on the crystallinity and phase distribution of atomic layer deposited Hf-silicate films with various Si concentrations. <i>Journal of Applied Physics</i> , 2008 , 104, 054101	2.5	15	
261	Improvement of the current-voltage characteristics of a tunneling dielectric by adopting a Si3N4BiO2Bi3N4 multilayer for flash memory application. <i>Applied Physics Letters</i> , 2005 , 87, 152106	3.4	15	
260	Interface Engineering for Extremely Large Grains in Explosively Crystallized TiO2 Films Grown by Low-Temperature Atomic Layer Deposition. <i>Chemistry of Materials</i> , 2017 , 29, 2046-2054	9.6	14	
259	Chemical interaction and ligand exchange between a [(CH3)3Si]3Sb precursor and atomic layer deposited Sb2Te3 films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1365-1370	7.1	14	
258	High quality interfacial sulfur passivation via H2S pre-deposition annealing for an atomic-layer-deposited HfO2 film on a Ge substrate. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 850-856	7.1	14	
257	Elastic resistance change and action potential generation of non-faradaic Pt/TiO2/Pt capacitors. <i>Nanoscale</i> , 2013 , 5, 6363-71	7.7	14	
256	Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation. <i>Applied Physics Letters</i> , 2010 , 97, 132107	3.4	14	
255	Polarization reversal behavior in the Pt/Pb(Zr,Ti)O3/Pt and Pt/Al2O3/Pb(Zr,Ti)O3/Pt capacitors for different reversal directions. <i>Applied Physics Letters</i> , 2010 , 96, 212902	3.4	14	
254	Spectroscopic Investigation on the Origin of Photoinduced Carrier Generation in Semiconducting InGaO and InGaZnO Films. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11962-11964	3.8	14	
253	Study on the Existence of Abnormal Hysteresis in Hf-In-Zn-O Thin Film Transistors under Illumination. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, H300		14	

252	Controlling the Composition of Doped Materials by ALD: A Case Study for Al-Doped TiO[sub 2] Films. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, G27		14
251	Improvements in electrical properties of (Ba,Sr)TiO3 capacitor with chemical vapor deposited Pt top electrode using Pt hexafluoroacetylacetonate. <i>Applied Physics Letters</i> , 1999 , 74, 3489-3491	3.4	14
250	Atomic layer deposition of GeSe films using HGeCl and [(CH)Si]Se with the discrete feeding method for the ovonic threshold switch. <i>Nanotechnology</i> , 2018 , 29, 365202	3.4	14
249	Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2016 , 34, 01A136	2.9	14
248	Comparison of the Atomic Layer Deposition of Tantalum Oxide Thin Films Using Ta(NBu)(NEt), Ta(NBu)(NEt)Cp, and HO. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 537-547	9.5	13
247	Atomic Layer Deposition of GeSe Thin Films for Endurable Ovonic Threshold Selectors with a Low Threshold Voltage. <i>ACS Applied Materials & Endurable Selectors</i> , 12, 23110-23118	9.5	13
246	Composition, Microstructure, and Electrical Performance of Sputtered SnO Thin Films for p-Type Oxide Semiconductor. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 3810-3821	9.5	13
245	Balancing the Source and Sink of Oxygen Vacancies for the Resistive Switching Memory. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	13
244	Electrically-generated memristor based on inkjet printed silver nanoparticles. <i>Nanoscale Advances</i> , 2019 , 1, 2990-2998	5.1	13
243	Effect of oxygen vacancy on the structural and electronic characteristics of crystalline Zn2SnO4. Journal of Materials Chemistry C, 2014 , 2, 8381-8387	7.1	13
242	Interface sulfur passivation using H 2 S annealing for atomic-layer-deposited Al 2 O 3 films on an ultrathin-body In 0.53 Ga 0.47 As-on-insulator. <i>Applied Surface Science</i> , 2014 , 315, 178-183	6.7	13
241	Atomic Layer Deposition of Ruthenium Nanoparticles Using a Low-Density Dielectric Film as Template Structure. <i>Chemistry of Materials</i> , 2009 , 21, 4006-4011	9.6	13
240	Positive temperature coefficient of resistivity in paraelectric (Ba,Sr)TiO3 thin films. <i>Applied Physics Letters</i> , 2004 , 84, 94-96	3.4	13
239	2D Electron Gas at the Interface of Atomic-Layer-Deposited Al2O3/TiO2 on SrTiO3 Single Crystal Substrate. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800527	6.4	13
238	A True Random Number Generator Using Threshold-Switching-Based Memristors in an Efficient Circuit Design. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800543	6.4	13
237	Controlling the Electrical Characteristics of ZrO2/Al2O3/ZrO2 Capacitors by Adopting a Ru Top Electrode Grown via Atomic Layer Deposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800454	2.5	13
236	Cation-Regulated Transformation for Continuous Two-Dimensional Tin Monosulfide. <i>Chemistry of Materials</i> , 2020 , 32, 2313-2320	9.6	12
235	Demonstrating the Ultrathin Metal I hsulator I Metal Diode Using TiN/ZrO2Al2O3 I rO2 Stack by Employing RuO2 Top Electrode. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 660-666	2.9	12

23		of the retention performance of an ultra-thin HfO2 resistance switching layer in an emory device. <i>Journal of Applied Physics</i> , 2018 , 124, 024102	2.5	12	
23		perties of ZrO2/Al2O3/ZrO2-Based Capacitors with TiN, Ru, and TiN/Ru Top Electrode Insisia Status Solidi - Rapid Research Letters, 2018 , 12, 1800356	2.5	12	
23	Double-layere Letters, 2013 ,	ed vertically integrated amorphous-In2Ga2ZnO7 thin-film transistor. <i>Applied Physics</i> 103, 183503	3.4	12	
23		talline structure of TiO2 substrates on initial growth of atomic layer deposited Ru thin <i>Surface Science</i> , 2011 , 257, 4302-4305	6.7	12	
23		dependent local electrical conduction in resistive switching TiO2 thin films. <i>Physica Rapid Research Letters</i> , 2010 , 4, 112-114	2.5	12	
22	29 polycrystalline	ration behavior and electrical characteristics of As-doped n+ e-silicon/high-k gate dielectric (HfO2 and Al2O3) films on Si (100) substrate. <i>Applied</i> s, 2003 , 83, 1403-1405	3.4	12	
22	28 conventional r	nformal deposition of SrTiO3 thin films by Atomic Layer Deposition using metal organic precursors and remote-plasma activated H2O. <i>Microelectronic</i> 005 , 80, 158-161	2.5	12	
22		nd Characterization of Pb(Zr, Ti)O3 Thin Films by Metalorganic Chemical vapor sing a Solid Delivery System. <i>Journal of Materials Research</i> , 2000 , 15, 1284-1290	2.5	12	
22	Effects of oxic liquid source r	dants on the deposition and dielectric properties of the SrTiO3 thin films prepared by metal-organic chemical vapor deposition (MOCVD). <i>Integrated Ferroelectrics</i> , 1996 , 12, 19	9-2 ^{:8} 3	12	
22		pelectric characteristics of Hf0.5Zr0.5O2 thin films grown on sputtered or deposited TiN bottom electrodes. <i>Applied Physics Letters</i> , 2020 , 117, 022902	3.4	12	
22		the Hysteresis Voltage in Atomic-Layer-Deposited p-Type SnO Thin-Film Transistors in Al2O3 Interfacial Layer. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900371	6.4	11	
22	23 Memristor cro	ossbar array for binarized neural networks. AIP Advances, 2019 , 9, 045131	1.5	11	
22		struction of InAs (001) depending on the pressure and temperature examined by onal thermodynamics. <i>Scientific Reports</i> , 2017 , 7, 10691	4.9	11	
2.2		haracterization of BeO Thin Films Grown by Atomic Layer Deposition Using H2O and Sources. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 17498-17504	3.8	11	
22	Reduction of O Deposition of	Charge Trapping in \$hbox{HfO}_{2}\$ Film on Ge Substrates by Atomic Layer Various Passivating Interfacial Layers. <i>IEEE Transactions on Electron Devices</i> , 2012 , 59, 23	5 6-2 35	6 ¹¹	
21		deposited HfO2 and HfO2/TiO2 bi-layer films using a heteroleptic Hf-precursor for nory applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18497		11	
21	1 ×	ted degradation in self-aligned polycrystalline silicon gate n-type field-effect th HfO2 gate dielectrics. <i>Applied Physics Letters</i> , 2004 , 85, 5965-5967	3.4	11	
21		cridation of Al[sub 2]O[sub 3] Interlayers for Atomic-Layer-Deposited HfO[sub 2] Gate as . Electrochemical and Solid-State Letters, 2004 , 7, F25		11	

216	Study on the Step Coverage of Metallorganic Chemical Vapor Deposited TiO[sub 2] and SrTiO[sub 3] Thin Films. <i>Journal of the Electrochemical Society</i> , 2005 , 152, C435	3.9	11
215	Electrical properties of high-k HfO2 films on Si1\(\text{MGex substrates}.\(\text{Microelectronic Engineering}, \text{ 2005} \), 80, 222-225	2.5	11
214	Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO-based ferroelectric thin film <i>Nature Communications</i> , 2022 , 13, 645	17.4	11
213	Complementary Resistive Switching and Synaptic-Like Memory Behavior in an Epitaxial SrFeO Thin Film through Oriented Oxygen-Vacancy Channels. <i>ACS Applied Materials & District Amplication (Natural Science of Complete Materials & District Amplication (Natural Science)</i> , 12, 41	740 ⁵ 41	7 48
212	Atomic layer deposition of chalcogenides for next-generation phase change memory. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3708-3725	7.1	11
211	Polarizing and depolarizing charge injection through a thin dielectric layer in a ferroelectric-dielectric bilayer. <i>Nanoscale</i> , 2021 , 13, 2556-2572	7.7	11
210	Effect of Growth Temperature during the Atomic Layer Deposition of the SrTiO Seed Layer on the Properties of RuO/SrTiO/Ru Capacitors for Dynamic Random Access Memory Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 41544-41551	9.5	11
209	Atomic Layer Deposited Oxygen-Deficient TaOx Layers for Electroforming-Free and Reliable Resistance Switching Memory. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1800429	2.5	11
208	Time-Efficient Stateful Dual-Bit-Memristor Logic. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900033	2.5	10
207	Phase control of HfO2-based dielectric films for higher-k materials. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 03D109	1.3	10
206	Capacitance and Interface Analysis of Transparent Analog Capacitor Using Indium Tin Oxide Electrodes and High-k Dielectrics. <i>Journal of the Electrochemical Society</i> , 2010 , 157, G170	3.9	10
205	Unusual Growth Behavior of Atomic Layer Deposited PbTiO3 Thin Films Using Water and Ozone As Oxygen Sources and Their Combination. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12736-12741	3.8	10
204	Effects of Annealing Environment on Interfacial Reactions and Electrical Properties of Ultrathin SrTiO[sub 3] on Si. <i>Journal of the Electrochemical Society</i> , 2009 , 156, G129	3.9	10
203	Compositional Variation of Metallorganic Chemically Vapor Deposited SrTiO[sub 3] Thin Films along the Capacitor Hole Having a Diameter of 0.15 h. <i>Journal of the Electrochemical Society</i> , 2001 , 148, G636	3.9	10
202	Stress effects of the inter-level dielectric layer on the ferroelectric performance of integrated SrBi2Ta2O9 capacitors. <i>Journal of Applied Physics</i> , 2001 , 89, 8011-8016	2.5	10
201	Deposition of Pb(Zr,Ti)O3 Thin Films by Metal-Organic Chemical Vapor Deposition Using Ediketonate Precursors at Low Temperatures. <i>Journal of the American Ceramic Society</i> , 1995 , 78, 329-33	36 ^{3.8}	10
200	Deposition and characterization of Pb TiO3 thin films on silicon wafers using metalorganic sources. Journal of Electronic Materials, 1993 , 22, 707-716	1.9	10
199	Field-Induced Ferroelectric Hf1-xZrxO2 Thin Films for High-k Dynamic Random Access Memory. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000631	6.4	10

198	Radical-Enhanced Atomic Layer Deposition of a Tungsten Oxide Film with the Tunable Oxygen Vacancy Concentration. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 18156-18164	3.8	10
197	Review of ferroelectric field-effect transistors for three-dimensional storage applications. <i>Nano Select</i> , 2021 , 2, 1187-1207	3.1	10
196	MoO2 as a thermally stable oxide electrode for dynamic random-access memory capacitors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13250-13256	7.1	10
195	Developing Precursor Chemistry for Atomic Layer Deposition of High-Density, Conformal GeTe Films for Phase-Change Memory. <i>Chemistry of Materials</i> , 2019 , 31, 8663-8672	9.6	9
194	Equilibrium crystal shape of GaAs and InAs considering surface vibration and new (111)B reconstruction: ab-initio thermodynamics. <i>Scientific Reports</i> , 2019 , 9, 1127	4.9	9
193	A Combination of a Volatile-Memristor-Based True Random-Number Generator and a Nonlinear-Feedback Shift Register for High-Speed Encryption. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901117	6.4	9
192	Electroforming-Free, Flexible, and Reliable Resistive Random-Access Memory Based on an Ultrathin TaO Film. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 10681-10688	9.5	9
191	Asymmetry in electrical properties of Al-doped TiO2 film with respect to bias voltage. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 410-413	2.5	9
190	Effect of sputter power on the photobias stability of zinc-tin-oxide field-effect transistors. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 011202	1.3	9
189	Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory. <i>ACS Applied Materials & Damp; Interfaces</i> , 2012 , 4, 5338-45	9.5	9
188	Dependence of optimized annealing temperature for tetragonal phase formation on the Si concentration of atomic-layer-deposited Hf-silicate film. <i>Journal of Applied Physics</i> , 2011 , 110, 114107	2.5	9
187	Electron hopping interactions in amorphous ZnO films probed by x-ray absorption near edge structure analysis. <i>Applied Physics Letters</i> , 2011 , 98, 222108	3.4	9
186	Scaling of equivalent oxide thickness of atomic layer deposited HfO2 film using RuO2 electrodes suppressing the dielectric dead-layer effect. <i>Applied Physics Letters</i> , 2012 , 101, 172910	3.4	9
185	Optimization of the annealing process for the (Ba,Sr)TiO3 thin films grown by low-temperature (420 °C) metalorganic chemical vapor deposition. <i>Journal of Materials Research</i> , 2001 , 16, 1363-1371	2.5	9
184	Electrical properties of (Pb,La)TiO3 thin films deposited by low pressure metal-organic chemical vapor deposition using solid delivery system. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1998 , 16, 2591-2594	2.9	9
183	Extension of Two-Port Sneak Current Cancellation Scheme to 3-D Vertical RRAM Crossbar Array. <i>IEEE Transactions on Electron Devices</i> , 2017 , 64, 1591-1596	2.9	8
182	Atomic layer deposition of Ru thin films using (2,4-dimethyloxopentadienyl)(ethylcyclopentadienyl)Ru and the effect of ammonia treatment during the deposition. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 6993-7004	7.1	8
181	Atomic Layer Deposition of Nanocrystalline-As-Deposited (GeTe)x(Sb2Te3)1☑ Films for Endurable Phase Change Memory. <i>Chemistry of Materials</i> , 2019 , 31, 8752-8763	9.6	8

180	Reducing the nano-scale defect formation of atomic-layer-deposited SrTiO3 films by adjusting the cooling rate of the crystallization annealing of the seed layer. <i>Thin Solid Films</i> , 2015 , 589, 723-729	2.2	8
179	Ab initio study on the structural characteristics of amorphous Zn2SnO4. <i>Applied Physics Letters</i> , 2013 , 103, 252102	3.4	8
178	Atomic layer deposition of TiO2 and Al-doped TiO2 films on Ir substrates for ultralow leakage currents. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 262-264	2.5	8
177	Methods of Set Switching for Improving the Uniformity of Filament Formation in the TiO[sub 2] Thin Film. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, G51		8
176	Effects of Oxygen Addition on the Local Structures of Cosputtered Transparent Conducting Oxide Films. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20463-20466	3.8	8
175	Investigation on spatially separated atomic layer deposition by gas flow simulation and depositing Al2O3 films. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 051504	2.9	8
174	Optical modeling and experimental verification of light induced phenomena in In-Ga-Zn-O thin film transistors with varying gate insulator thickness. <i>Journal of Applied Physics</i> , 2012 , 111, 024511	2.5	8
173	Strain evolution of each type of grains in poly-crystalline (Ba,Sr)TiO(3) thin films grown by sputtering. <i>Scientific Reports</i> , 2012 , 2, 939	4.9	8
172	Influence of Phase Separation on Electrical Properties of ALD HfBilicate Films with Various Si Concentrations. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, H121		8
171	Improvement in Thermal Stability of Stacked Structures of Aluminum Nitride and Lanthanum Oxide Thin Films on Si Substrate. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, G93		8
170	Fabrication of suspended single-walled carbon nanotubes via a direct lithographic route. <i>Journal of Materials Chemistry</i> , 2006 , 16, 174-178		8
169	Microstructural characterization of sputter-deposited Pt thin film electrode. <i>Journal of Materials Research</i> , 2004 , 19, 460-468	2.5	8
168	Fabrication of ultrathin IrO2 top electrode for improving thermal stability of metalihsulatorihetal field emission cathodes. <i>Thin Solid Films</i> , 2005 , 471, 236-242	2.2	8
167	Kernel Application of the Stacked Crossbar Array Composed of Self-Rectifying Resistive Switching Memory for Convolutional Neural Networks. <i>Advanced Intelligent Systems</i> , 2020 , 2, 1900116	6	8
166	Enhanced Ferroelectric Properties in Hf0.5Zr0.5O2 Films Using a HfO0.61N0.72 Interfacial Layer. <i>Advanced Electronic Materials</i> ,2100042	6.4	8
165	Temperature controlled Ru and RuO growth via O radical-enhanced atomic layer deposition with Ru(EtCp). <i>Journal of Chemical Physics</i> , 2019 , 151, 204701	3.9	8
164	In-Memory Stateful Logic Computing Using Memristors: Gate, Calculation, and Application. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100208	2.5	8
163	Novel Selector-Induced Current-Limiting Effect through Asymmetry Control for High-Density One-Selector (Dne-Resistor Crossbar Arrays. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800806	6.4	7

(2014-2019)

162	Broad Phase Transition of Fluorite-Structured Ferroelectrics for Large Electrocaloric Effect. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900177	2.5	7	
161	Modulated filamentary conduction of Ag/TiO2 core-shell nanowires to impart extremely sustained resistance switching behavior in a flexible composite. <i>Applied Materials Today</i> , 2020 , 19, 100569	6.6	7	
160	Ferroelectric switching in bilayer 3R MoS via interlayer shear mode driven by nonlinear phononics. <i>Scientific Reports</i> , 2019 , 9, 14919	4.9	7	
159	Resistive Switching in \$hbox{TiO}_{2}\$ Thin Films Using the Semiconducting In-Ga-Zn-O Electrode. <i>IEEE Electron Device Letters</i> , 2012 , 33, 582-584	4.4	7	
158	Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition. <i>ACS Applied Materials & Deposition (Control of the Control of the</i>	9.5	7	
157	Giant Dielectric Permittivity in Ferroelectric Thin Films: Domain Wall Ping Pong. <i>Scientific Reports</i> , 2015 , 5, 14618	4.9	7	
156	Atomic Layer Deposition for Microelectronic Applications 2012 , 159-192		7	
155	Unipolar resistive switching characteristics of pnictogen oxide films: Case study of Sb2O5. <i>Journal of Applied Physics</i> , 2012 , 112, 104105	2.5	7	
154	Control of conducting filaments in TiO2 films by a thin interfacial conducting oxide layer at the cathode. <i>Applied Physics Letters</i> , 2013 , 102, 082903	3.4	7	
153	Interfacial dead-layer effects in Hf-silicate films with Pt or RuO2 gates. <i>ACS Applied Materials & Amp; Interfaces</i> , 2013 , 5, 6769-72	9.5	7	
152	Bias Temperature Instability Characteristics of n- and p-Type Field Effect Transistors Using HfO[sub 2] Gate Dielectrics and Metal Gate. <i>Journal of the Electrochemical Society</i> , 2010 , 157, H355	3.9	7	
151	Characteristics of Polycrystalline SrRuO[sub 3] Thin-Film Bottom Electrodes for Metallorganic Chemical-Vapor-Deposited Pb(Zr[sub 0.2]Ti[sub 0.8])O[sub 3] Thin Films. <i>Journal of the Electrochemical Society</i> , 2006 , 153, C777	3.9	7	
150	Amorphous High k Dielectric Bi[sub 1ND]Ti[sub x]Si[sub y]O[sub z] Thin Films by ALD. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, F85		7	
149	Dielectric constant dispersion of yttrium-doped (Ba,Sr)TiO3 films in the high-frequency (10kHzB7GHz) domain. <i>Applied Physics Letters</i> , 2005 , 87, 232903	3.4	7	
148	Pb-Diffusion Barrier Layers for PbTiO3 Thin Films Deposited on Si Substrates by Metal Organic Chemical Vapor Deposition. <i>Journal of the American Ceramic Society</i> , 1995 , 78, 337-341	3.8	7	
147	Atomistic Understanding of the Ferroelectric Properties of a Wurtzite-Structure (AlN)n/(ScN)m Superlattice. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100009	2.5	7	
146	Time-varying data processing with nonvolatile memristor-based temporal kernel. <i>Nature Communications</i> , 2021 , 12, 5727	17.4	7	
145	Mass-Production Memories (DRAM and Flash) 2014 , 73-122		7	

144	Research Update: Diode performance of the Pt/Al2O3/two-dimensional electron gas/SrTiO3 structure and its time-dependent resistance evolution. <i>APL Materials</i> , 2017 , 5, 042301	5.7	6
143	Matrix Mapping on Crossbar Memory Arrays with Resistive Interconnects and Its Use in In-Memory Compression of Biosignals. <i>Micromachines</i> , 2019 , 10,	3.3	6
142	Hydrogen radical enhanced atomic layer deposition of TaOx: saturation studies and methods for oxygen deficiency control. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 9667-9674	7.1	6
141	Interfacial chemical bonding-mediated ionic resistive switching. Scientific Reports, 2017, 7, 1264	4.9	6
140	Effect of Sintering Temperature on Thermoelectric Properties of PbTe/Ag Composites Fabricated by Chemical Plating and Spark Plasma Sintering. <i>Journal of Electronic Materials</i> , 2015 , 44, 1450-1455	1.9	6
139	Variation in the threshold voltage of amorphous-In2Ga2ZnO7 thin-film transistors by ultrathin Al2O3 passivation layer. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2013 , 31, 061205	1.3	6
138	Dc current transport behavior in amorphous GeSe films. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 102, 1027-1032	2.6	6
137	Electrically Benign Dry-Etching Method for Rutile TiO[sub 2] Thin-Film Capacitors with Ru Electrodes. <i>Electrochemical and Solid-State Letters</i> , 2010 , 13, G1		6
136	An analysis of imprinted hysteresis loops for a ferroelectric Pb(Zr,Ti)O3 thin film capacitor using the switching transient current measurements. <i>Journal of Applied Physics</i> , 2009 , 105, 044106	2.5	6
135	Ge[sub 2]Sb[sub 2]Te[sub 5] Charge Trapping Nanoislands with High-k Blocking Oxides for Charge Trap Memory. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, H378		6
134	High rate dry etching of InGaZnO by BCl3/O2 plasma. <i>Applied Physics Letters</i> , 2011 , 99, 062110	3.4	6
133	Unusual thickness dependence of permittivity and elastic strain in Sc modified epitaxial (Ba,Sr)TiO3 thin films. <i>Applied Physics Letters</i> , 2008 , 92, 102902	3.4	6
132	Properties of MIS Capacitors Using the Atomic-Layer-Deposited ZnO Semiconductor and Al[sub 2]O[sub 3] Insulator. <i>Journal of the Electrochemical Society</i> , 2008 , 155, H858	3.9	6
131	Atomic rearrangements in HfO2Bi1MGex interfaces. <i>Applied Physics Letters</i> , 2006 , 89, 132904	3.4	6
130	Investigation of Ru/TiN Bottom Electrodes Prepared by Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 6635-6639	1.4	6
129	Improvements in Reliability and Leakage Current Properties of HfO[sub 2] Gate Dielectric Films by In Situ O[sub 3] Oxidation of Si Substrate. <i>Electrochemical and Solid-State Letters</i> , 2004 , 7, G254		6
128	Changes in structures and electrical conduction mechanisms of chemical vapor deposited Ta2O5 thin films by annealing under O3 atmosphere with ultraviolet light radiation. <i>Journal of Materials Research</i> , 2004 , 19, 1516-1523	2.5	6
127	Bulk- or interface-limited electrical conductions in IrO2/(Ba,Sr)TiO3/IrO2 thin film capacitors. <i>Journal of Materials Research</i> , 2001 , 16, 3476-3484	2.5	6

126	Atomic layer deposition of Ta-doped SnO2 films with enhanced dopant distribution for thermally stable capacitor electrode applications. <i>Applied Surface Science</i> , 2019 , 497, 143804	6.7	5	
125	Substrate Effects on the Growth Behavior of Atomic-Layer-Deposited Ru Thin Films Using RuO4 Precursor and N2/H2 Mixed Gas. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 22539-22549	3.8	5	
124	Electroforming-Free Bipolar Resistive Switching in GeSe Thin Films with a Ti-Containing Electrode. <i>ACS Applied Materials & Damp; Interfaces</i> , 2019 , 11, 38910-38920	9.5	5	
123	Ferroelectric memories 2019 , 393-441		5	
122	Area-Type Electronic Bipolar Resistive Switching of Pt/Al2O3/Si3N3.0/Ti with Forming-Free, Self-Rectification, and Nonlinear Characteristics. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 2000209	2.5	5	
121	Electroforming Processes in Metal Oxide Resistive-Switching Cells 2016 , 289-316		5	
120	Correct extraction of frequency dispersion in accumulation capacitance in InGaAs metal-insulator-semiconductor devices. <i>Electronic Materials Letters</i> , 2016 , 12, 768-772	2.9	5	
119	Scaling the Equivalent Oxide Thickness by Employing a TiO2 Thin Film on a ZrO2Al2O3-Based Dielectric for Further Scaling of Dynamic Random Access Memory. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900282	2.5	5	
118	Freestanding Micro-SOFCs with Electrodes Prepared by Electrostatic Spray Deposition. <i>Fuel Cells</i> , 2014 , 14, 332-335	2.9	5	
117	Polarization switching and discharging behaviors in serially connected ferroelectric Pt/Pb(Zr,Ti)O3/Pt and paraelectric capacitors. <i>Journal of Applied Physics</i> , 2011 , 109, 114113	2.5	5	
116	Effects of surface treatments using O3 and NH3 on electrical properties and chemical structures of high-k HfO2 dielectric films on strained Si1⊠GexBi substrates. <i>Journal of Applied Physics</i> , 2008 , 103, 084117	2.5	5	
115	Enhancement in thermal stability of atomic layer deposited HfO2 films by using top Hf metal layer. <i>Microelectronic Engineering</i> , 2007 , 84, 2226-2229	2.5	5	
114	Oxidation Behavior of TiAlN Barrier Layers with and without Thin Metal Overlayers for Memory Capacitor Applications. <i>Journal of Materials Research</i> , 2002 , 17, 1789-1794	2.5	5	
113	Analysis of stresses in Ru thin films prepared by chemical vapor deposition. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2003 , 21, 1381-1385	2.9	5	
112	Pt-Doped Ru Films Prepared by CVD as Electrodes for DRAM Capacitors. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, C12		5	
111	Chameleonic electrochemical metallization cells: dual-layer solid electrolyte-inducing various switching behaviours. <i>Nanoscale</i> , 2016 , 8, 15621-8	7.7	5	
110	X-ray spectroscopy study on the electronic structure of Sn-added p-type SnO films. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 065502	1.8	5	
109	Review of Semiconductor Flash Memory Devices for Material and Process Issues <i>Advanced Materials</i> , 2022 , e2200659	24	5	

108	Effect of Electrode Material on the Crystallization of GeTe Grown by Atomic Layer Deposition for Phase Change Random Access Memory. <i>Micromachines</i> , 2019 , 10,	3.3	4
107	Effect of Surface/Interface Energy and Stress on the Ferroelectric Properties 2019 , 145-172		4
106	Origin of the Threshold Voltage Shift in a Transistor with a 2D Electron Gas Channel at the Al2O3/SrTiO3 Interface. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901286	6.4	4
105	Thermoelectric Performance of Bi0.5Sb1.5Te3/Sb Composites Fabricated by Electroless Plating and Spark Plasma Sintering. <i>Journal of Electronic Materials</i> , 2015 , 44, 1498-1503	1.9	4
104	Change in the resistivity of Ge-doped Sb phase change thin films grown by chemical vapor deposition according to their microstructures. <i>Applied Physics Letters</i> , 2009 , 94, 222115	3.4	4
103	Improvements in the electrical properties of high-k HfO2 dielectric films on Si1⊠Gex substrates by postdeposition annealing. <i>Applied Physics Letters</i> , 2007 , 90, 042915	3.4	4
102	The electrical and physical analysis of Pt gate/Al2O3/p-Si (100) with dual high-k gate oxide thickness for deep submicron complementary metal-oxide-semiconductor device with low power and high reliability. <i>Journal of Electronic Materials</i> , 2005 , 34, 1104-1109	1.9	4
101	Atomic Layer Deposition of Bi[sub 1¼¼]Ti[sub x]Si[sub y]O[sub z] Thin Films from Alkoxide Precursors and Water. <i>Journal of the Electrochemical Society</i> , 2005 , 152, F124	3.9	4
100	Low temperature metal-organic chemical vapor deposition of (Ba, Sr)TiO3 thin films for capacitor applications. <i>Integrated Ferroelectrics</i> , 2000 , 30, 37-44	0.8	4
99	In-Depth Analysis of One Selector Dne Resistor Crossbar Array for Its Writing and Reading Operations for Hardware Neural Network with Finite Wire Resistance. <i>Advanced Intelligent Systems</i> ,210	0174	4
98	Impact of the Atomic Layer-Deposited Ru Electrode Surface Morphology on Resistive Switching Properties of TaO-Based Memory Structures. <i>ACS Applied Materials & Description of TaO-Based Memory Structures</i> . <i>ACS Applied Materials & Description of TaO-Based Memory Structures</i> .	53:41	4
97	Atomic engineering of metastable BeO6 octahedra in a rocksalt framework. <i>Applied Surface Science</i> , 2020 , 501, 144280	6.7	4
96	Diode Property and Positive Temperature Coefficient of Resistance of Pt/Al2O3/Nb:SrTiO3. Advanced Electronic Materials, 2018 , 4, 1800388	6.4	4
95	Impact of Zr Content in Atomic Layer Deposited Hf1 ßZrxO2 Thin Films 2019 , 75-101		3
94	Negative Capacitance in HfO2- and ZrO2-Based Ferroelectrics 2019 , 473-493		3
93	Markov Chain Hebbian Learning Algorithm With Ternary Synaptic Units. <i>IEEE Access</i> , 2019 , 7, 10208-102	23 5	3
92	Resistive random access memory based on gallium oxide thin films for self-powered pressure sensor systems. <i>Ceramics International</i> , 2020 , 46, 21141-21148	5.1	3
91	An ab initio approach on the asymmetric stacking of GaAs <111> nanowires grown by a vapor-solid method. <i>Nanoscale</i> , 2020 , 12, 17703-17714	7.7	3

(2020-2019)

90	Leakage Current Control of SrTiO3 Thin Films through Al Doping at the Interface between Dielectric and Electrode Layers via Atomic Layer Deposition. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900373	2.5	3
89	Theoretical understanding of the catalyst-free growth mechanism of GaAs B nanowires. <i>Applied Surface Science</i> , 2019 , 497, 143740	6.7	3
88	Regulation of transport properties by polytypism: a computational study on bilayer MoS. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 21282-21286	3.6	3
87	Relationship Between Conduction Mechanism and Low-Frequency Noise in Polycrystalline-\$hbox{TiO}_{x}\$-Based Resistive-Switching Memory Devices. <i>IEEE Electron Device Letters</i> , 2012 , 33, 1063	4 1 0 65	3
86	Nondestructive investigation of interface states in high-k oxide films on Ge substrate using X-ray absorption spectroscopy. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 181-183	2.5	3
85	Atomic-Layer-Deposited Dielectric Thin Films on a Cu Clad Laminate Substrate for Embedded MetalInsulatorInetal Capacitor Applications in Printed Circuit Boards. <i>Journal of the Electrochemical Society</i> , 2011 , 158, G1	3.9	3
84	Concurrent presence of unipolar and bipolar resistive switching phenomena in pnictogen oxide Sb2O5 films. <i>Journal of Applied Physics</i> , 2012 , 112, 114105	2.5	3
83	Effect of Alumina Addition on Bi-Ti-Al-O Dielectric Thin Films. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, G231		3
82	Atomic Layer Deposition of Bi[sub 1월]Ti[sub x]Si[sub y]O[sub z] Thin Films Using H[sub 2]O Oxidant and Their Characteristics Depending on Si Content. <i>Journal of the Electrochemical Society</i> , 2007 , 154, H915	3.9	3
81	Phosphorus ion implantation and POCl3 doping effects of n+-polycrystalline-silicon/high-k gate dielectric (HfO2 and Al2O3) films. <i>Applied Physics Letters</i> , 2004 , 84, 2868-2870	3.4	3
80	Fabrication of HfO[sub 2] Thin-Film Capacitors with a Polycrystalline Si Gate Electrode and a Low Interface Trap Density. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, F32		3
79	Thickness Scaling of Pb(Zr,Ti)O 3 Thin Films and Pt Electrodes for High Density FeRAM Devices. <i>Integrated Ferroelectrics</i> , 2002 , 48, 139-147	0.8	3
78	Intermetal dielectric process using spin-on glass for ferroelectric memory devices having SrBi2Ta2O9 capacitors. <i>Journal of Materials Research</i> , 2000 , 15, 2822-2829	2.5	3
77	Characterization of MOCVD Pt electrode for ferroelectric thin films. <i>Integrated Ferroelectrics</i> , 1996 , 13, 79-86	0.8	3
76	Negative Capacitance from the Inhomogenous Stray Field in a Ferroelectric Dielectric Structure. <i>Advanced Functional Materials</i> ,2200389	15.6	3
75	Bipolar resistive switching property of Si3N4\(\mathbb{B}\) thin films depending on N deficiency. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1755-1761	7.1	3
74	Substrate Surface Modification for Enlarging Two-Dimensional SnS Grains at Low Temperatures. <i>Chemistry of Materials</i> , 2020 , 32, 9026-9033	9.6	3
73	Substrate-Dependent Growth Behavior of Atomic-Layer-Deposited Zinc Oxide and Zinc Tin Oxide Thin Films for Thin-Film Transistor Applications. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 26780-26792	3.8	3

72	Novel Applications of Antiferroelectrics and Relaxor Ferroelectrics: A Material Point of View. <i>Topics in Applied Physics</i> , 2016 , 295-310	0.5	3
71	Neuromorphic Computing: Memristors for Energy-Efficient New Computing Paradigms (Adv. Electron. Mater. 9/2016). <i>Advanced Electronic Materials</i> , 2016 , 2,	6.4	3
70	Optical control of the layer degree of freedom through Wannier-Stark states in polar 3R MoS. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 315502	1.8	3
69	A new sensing mechanism of Si FET-based gas sensor using pre-bias. <i>Sensors and Actuators B: Chemical</i> , 2020 , 302, 127147	8.5	3
68	Investigating the Reasons for the Difficult Erase Operation of a Charge-Trap Flash Memory Device with Amorphous Oxide Semiconductor Thin-Film Channel Layers. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2000549	2.5	3
67	Reliable Domain-Specific Exclusive Logic Gates Using Reconfigurable Sequential Logic Based on Antiparallel Bipolar Memristors. <i>Advanced Intelligent Systems</i> ,2100267	6	3
66	Role of the Short-Range Order in Amorphous Oxide on MoS2/a-SiO2 and MoS2/a-HfO2 Interfaces. <i>Physica Status Solidi (B): Basic Research</i> , 2019 , 256, 1900002	1.3	2
65	Impact of Electrodes on the Ferroelectric Properties 2019 , 341-364		2
64	Pyroelectric and Electrocaloric Effects and Their Applications 2019 , 217-244		2
63	Integration Technology and Cell Design 2016 , 573-596		2
6 ₃	Integration Technology and Cell Design 2016 , 573-596 Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 108-110	2.5	2
Ť	Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid</i>	2.5 15.6	2
62	Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 108-110 Resistive Memory: 32 B2 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory (Adv. Funct. Mater. 11/2013). <i>Advanced Functional Materials</i> , 2013 ,		2
62 61	Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 108-110 Resistive Memory: 32 B2 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory (Adv. Funct. Mater. 11/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1350-1350 Optimized Electrical Properties and Chemical Structures of SrTiO[sub 3] Thin Films on Si Using	15.6	2
62 61 60	Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 108-110 Resistive Memory: 32 B2 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory (Adv. Funct. Mater. 11/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1350-1350 Optimized Electrical Properties and Chemical Structures of SrTiO[sub 3] Thin Films on Si Using Various Interfacial Barrier Layers. <i>Journal of the Electrochemical Society</i> , 2010 , 157, G216 Effects of magnitude and direction of the biaxial compressive strain on the formation and migration of a vacancy in Ge by using density functional theory. <i>Journal of Applied Physics</i> , 2011 ,	15.6 3·9	2 2
62 61 60 59	Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 108-110 Resistive Memory: 32 B2 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory (Adv. Funct. Mater. 11/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1350-1350 Optimized Electrical Properties and Chemical Structures of SrTiO[sub 3] Thin Films on Si Using Various Interfacial Barrier Layers. <i>Journal of the Electrochemical Society</i> , 2010 , 157, G216 Effects of magnitude and direction of the biaxial compressive strain on the formation and migration of a vacancy in Ge by using density functional theory. <i>Journal of Applied Physics</i> , 2011 , 110, 033504 Liquid injection atomic layer deposition of perovskite-type multi-component oxide thin films for	15.6 3·9	2 2 2
62 61 60 59 58	Migration of nitrogen in hexagonal Ge2Sb2Te5: An ab-initio study. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 108-110 Resistive Memory: 32 B2 Crossbar Array Resistive Memory Composed of a Stacked Schottky Diode and Unipolar Resistive Memory (Adv. Funct. Mater. 11/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 1350-1350 Optimized Electrical Properties and Chemical Structures of SrTiO[sub 3] Thin Films on Si Using Various Interfacial Barrier Layers. <i>Journal of the Electrochemical Society</i> , 2010 , 157, G216 Effects of magnitude and direction of the biaxial compressive strain on the formation and migration of a vacancy in Ge by using density functional theory. <i>Journal of Applied Physics</i> , 2011 , 110, 033504 Liquid injection atomic layer deposition of perovskite-type multi-component oxide thin films for ferroelectric and higher-k three dimensional capacitor structures 2008 , Comparison of Electrical Properties Between HfO[sub 2] Films on Strained and Relaxed Si[sub	15.6 3·9	2 2 2 2

54	Low temperature metal-organic chemical vapor deposition of Ru thin films as electrode for high dielectric capacitors. <i>Integrated Ferroelectrics</i> , 2000 , 30, 45-52	0.8	2
53	The effects of capping barrier layers on the compositional and structural variations of integrated Pb(Zr, Ti)O3 ferroelectric capacitor having the dimension 3 B fb2. <i>Journal of Materials Research</i> , 1999 , 14, 2053-2060	2.5	2
52	Multi-Level Control of Conductive Filament Evolution and Enhanced Resistance Controllability of the Cu-Cone Structure Embedded Conductive Bridge Random Access Memory. <i>Advanced Electronic Materials</i> ,2100209	6.4	2
51	Threshold Voltage Modulation in a Transistor with a Two-Dimensional Electron Gas Channel at the Interface between Al2O3 and Sub-5 nm ZnO Films. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 3247-3255	4	2
50	Atomic and electronic structures of a-ZnSnO3/a-SiO2 interface by ab initio molecular dynamics simulations. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 1765-1770	1.3	2
49	Characterization of a 2D Electron Gas at the Interface of Atomic-Layer Deposited Al 2 O 3 /ZnO Thin Films for a Field-Effect Transistor. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000876	6.4	2
48	Atomistic prediction on the configuration- and temperature-dependent dielectric constant of Be0.25Mg0.75O superlattice as a high-Idielectric layer. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 851-85	97.1	2
47	Area-Type Electronic Bipolar Switching Al/TiO/TiO/Al Memory with Linear Potentiation and Depression Characteristics. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 39561-39572	9.5	2
46	Trap Reduction through O3 Post-Deposition Treatment of Y2O3 Thin Films Grown by Atomic Layer Deposition on Ge Substrates. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000819	6.4	2
45	Demonstration of Neuromodulation-inspired Stashing System for Energy-efficient Learning of Spiking Neural Network using a Self-Rectifying Memristor Array. <i>Advanced Functional Materials</i> ,2200337	7 ^{15.6}	2
44	Fabrication of a nano-scaled tri-gate field effect transistor using the step-down patterning and dummy gate processes. <i>Microelectronic Engineering</i> , 2017 , 173, 33-41	2.5	1
43	Stochastic Learning with Back Propagation 2019 ,		1
42	Orientation-dependent structural and electronic properties of Ge/a-GeO2 interfaces: first-principles study. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 155101	3	1
41	Tunneling Properties of the Charge Carriers through Sub-2-nm-Thick Oxide in Ge/a-GeO2/Ge Structures Using the First-Principles Scattering-State Method. <i>Physical Review Applied</i> , 2019 , 11,	4.3	1
40	Artificial Neural Network for Response Inference of a Nonvolatile Resistance-Switch Array. <i>Micromachines</i> , 2019 , 10,	3.3	1
39	Atomic Layer Deposition of SnTe Thin Film Using Sn(N(CH3)2)4 and Te(Si(CH3)3)2 with Ammonia Coinjection. <i>Crystal Growth and Design</i> , 2020 , 20, 4649-4656	3.5	1
38	A first-principles study of the structural and electronic properties of the epitaxial Ge(1 1 1)/La2O3(0 0 1) heterostructure. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 365101	3	1
37	Next-Generation Memory: Double-Layer-Stacked One Diode-One Resistive Switching Memory Crossbar Array with an Extremely High Rectification Ratio of 109 (Adv. Electron. Mater. 7/2017). <i>Advanced Electronic Materials</i> , 2017 , 3,	6.4	1

36	Electrically Benign Ru Wet Etching Method for Fabricating RulliO[sub 2]Ru Capacitor. <i>Journal of the Electrochemical Society</i> , 2011 , 158, G47	3.9	1
35	The Effect of Periodic Relaxation on the Growth Behavior and Electrical Properties of Atomic Layer Deposited PbTiO3 Thin Film. <i>ECS Transactions</i> , 2009 , 19, 815-828	1	1
34	Atomic Layer Deposition of Ru Thin Films Using 2,4-(dimethylpentadienyl)(ethylcyclopentadienyl) Ru by a Liquid Injection System. <i>Applications of Ferroelectrics, IEEE International Symposium on</i> , 2007 ,		1
33	Fabrication of a metal-oxide-semiconductor-type capacitive microtip array using SiO2 or HfO2 gate insulators. <i>Applied Physics Letters</i> , 2004 , 85, 5412-5414	3.4	1
32	Deposition and Characterization of High Dielectric Thin Films for Memory Device Application. <i>Surface Review and Letters</i> , 2003 , 10, 591-604	1.1	1
31	Effect of local strain energy to predict accurate phase diagram of IIIIV pseudobinary systems: case of Ga(As,Sb) and (In,Ga)As. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 045104	3	1
30	Comparative Study on the Gate-Induced Electrical Instability of p-Type SnO Thin-Film Transistors with SiO2 and Al2O3/SiO2 Gate Dielectrics. <i>Physica Status Solidi - Rapid Research Letters</i> , 2020 , 14, 2000	304	1
29	A High-Speed True Random Number Generator Based on a CuxTe1⊠ Diffusive Memristor. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2100062	6	1
28	Improved ferroelectricity in Hf0.5Zr0.5O2 by inserting an upper HfOxNy interfacial layer. <i>Applied Physics Letters</i> , 2021 , 119, 122902	3.4	1
27	Optimized Al-doped TiO2 gate insulator for a metal-oxide-semiconductor capacitor on a Ge substrate. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 1572-1583	7.1	1
26	Training Method for Accurate Off-Chip Training of One-Selector-One-Resistor Crossbar Array with Nonlinearity and Wire Resistance. <i>Advanced Intelligent Systems</i> ,2100256	6	1
25	The Contrasting Impacts of the Al 2 O 3 and Y 2 O 3 Insertion Layers on the Crystallization of ZrO 2 Films for Dynamic Random Access Memory Capacitors. <i>Advanced Electronic Materials</i> ,2200099	6.4	1
24	Effect of the Annealing Temperature of the Seed Layer on the Following Main Layer in Atomic-Layer-Deposited SrTiO3 Thin Films. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800.	5 3 7	0
23	Investigation of the electronic structure of amorphous SnO film using x-ray absorption spectroscopy. <i>Applied Physics Letters</i> , 2020 , 116, 052102	3.4	O
22	Influences of oxygen source and substrate temperature on the unusual growth mechanism of atomic layer deposited magnesium oxide using bis(cyclopentadienyl)magnesium precursor. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 15359-15374	7.1	0
21	Improved Properties of the Atomic Layer Deposited Ru Electrode for Dynamic Random-Access Memory Capacitor Using Discrete Feeding Method. <i>ACS Applied Materials & Discrete Feeding Method.</i> 13, 23915-23927	9.5	O
20	Enhancement of electrical performance of atomic layer deposited SnO films via substrate surface engineering. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12314-12321	7.1	О
19	eWB: Event-Based Weight Binarization Algorithm for Spiking Neural Networks. <i>IEEE Access</i> , 2021 , 9, 380)9 <i>T</i> - 38	3106

(2021-2022)

18	Atomistic prediction on the composition- and configuration-dependent bandgap of Ga(As,Sb) using cluster expansion and ab initio thermodynamics. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2022 , 280, 115713	3.1	O
17	Reliable Domain-Specific Exclusive Logic Gates Using Reconfigurable Sequential Logic Based on Antiparallel Bipolar Memristors. <i>Advanced Intelligent Systems</i> , 2022 , 4, 2270021	6	Ο
16	A First-Principles Study on the Oxygen Adsorption and Interface Characteristics with a-GeO2 of Ge[001] Nanowire. <i>Journal of the Korean Physical Society</i> , 2019 , 75, 283-287	0.6	
15	Atomic Layer Deposition Process of Hf-Based High-k Gate Dielectric Film on Si Substrate 2012 , 77-110		
14	Electrode Engineering for Improving Resistance Switching of Sb2O5Films. <i>Applied Physics Express</i> , 2013 , 6, 091102	2.4	
13	Inhomogeneity-Induced Carrier Transport of Chemical Vapor Deposited Graphene on HfO2at Low Temperatures. <i>Journal of the Physical Society of Japan</i> , 2013 , 82, 014705	1.5	
12	Nanosession: Valence Change Memories - Redox Mechanism and Modelling 2013 , 219-231		
11	BORON DIFFUSION PROPERTIES AND ELECTRICAL CHARACTERISTICS OF p+ Poly-Si0.73Ge0.27/AlNx/Al2O3/AlNx/n-Si (100) USING IN-SITU ALD. <i>Integrated Ferroelectrics</i> , 2005 , 74, 79-85	0.8	
10	Deposition of Ru Thin Films by MOCVD Using Direct Liquid Injection System. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 672, 1		
9	Variations of interface potential barrier height and leakage current of (Ba, Sr)TiO3 thin films deposited by sputtering process. <i>Integrated Ferroelectrics</i> , 1998 , 20, 255-255	0.8	
8	Novel Applications of Antiferroelectrics and Relaxor Ferroelectrics: A Material Point of View. <i>Topics in Applied Physics</i> , 2020 , 343-357	0.5	
7	Poster: Memristive Systems523-587		
6	Nanosession: Atomic Layer Deposition419-428		
5	Front End of the Line Process 2014 , 175-208		
4	A High-Speed True Random Number Generator Based on a CuxTe1☑ Diffusive Memristor. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2170057	6	
3	Initial oxidation and surface stability diagram of Ge(100) as a function of the temperature and oxygen partial pressure through ab initio thermodynamics. <i>Physica Scripta</i> , 2020 , 95, 025701	2.6	
2	Comparison of high-k Y2O3/TiO2 bilayer and Y-doped TiO2 thin films on Ge substrate. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 185110	3	
1	InterPhon: Ab initio interface phonon calculations within a 3D electronic structure framework. <i>Computer Physics Communications</i> , 2021 , 268, 108089	4.2	