Patrice Brassard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5389058/publications.pdf

Version: 2024-02-01

80 papers

2,916 citations

236925 25 h-index 51 g-index

86 all docs 86 docs citations

86 times ranked 3851 citing authors

#	Article	IF	Citations
1	Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 454-470.	4.3	17
2	Integrative cerebral blood flow regulation in ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 387-403.	4.3	27
3	Prenatal exercise and cardiovascular health (PEACH) study: impact of acute and chronic exercise on cerebrovascular hemodynamics and dynamic cerebral autoregulation. Journal of Applied Physiology, 2022, 132, 247-260.	2.5	7
4	Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. Journal of Applied Physiology, 2022, 132, 154-166.	2.5	16
5	Directional sensitivity of the cerebral pressure–flow relationship in young healthy individuals trained in endurance and resistance exercise. Experimental Physiology, 2022, 107, 299-311.	2.0	9
6	Trans-cerebral HCO ₃ ^{â^²} and PCO ₂ exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 559-571.	4.3	6
7	Near Infrared Spectroscopy for Poor Grade Aneurysmal Subarachnoid Hemorrhage—A Concise Review. Frontiers in Neurology, 2022, 13, 874393.	2.4	2
8	Sex-specific effects of cardiorespiratory fitness on age-related differences in cerebral hemodynamics. Journal of Applied Physiology, 2022, 132, 1310-1317.	2.5	8
9	The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Autonomic Neuroscience: Basic and Clinical, 2022, 240, 102985.	2.8	14
10	Point/counterpoint: We should take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 2351-2353.	4.3	8
11	Time-course recovery of cerebral blood velocity metrics post aerobic exercise: a systematic review. Journal of Applied Physiology, 2022, 133, 471-489.	2.5	5
12	On the use and misuse of cerebral hemodynamics terminology using transcranial Doppler ultrasound: a call for standardization. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H350-H357.	3.2	14
13	Influence of highâ€intensity interval training to exhaustion on the directional sensitivity of the cerebral pressureâ€flow relationship in young enduranceâ€trained men. Physiological Reports, 2022, 10, .	1.7	2
14	A proposed algorithm for combining transcranial Doppler ultrasound monitoring with cerebral and somatic oximetry: a case report. Canadian Journal of Anaesthesia, 2021, 68, 130-136.	1.6	8
15	Effects of age and sex on middle cerebral artery blood velocity and flow pulsatility index across the adult lifespan. Journal of Applied Physiology, 2021, 130, 1675-1683.	2.5	44
16	What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates?. Physiological Measurement, 2021, 42, 044002.	2.1	14
17	Heart Rate Variability in Young Adults with Persisting Postâ€Concussion Symptoms. FASEB Journal, 2021, 35, .	0.5	0
18	The Relationship Between Cardiorespiratory Fitness and Middle Cerebral Artery Velocity in Women. FASEB Journal, 2021, 35, .	0.5	0

#	Article	IF	CITATIONS
19	Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. Journal of Applied Physiology, 2021, 130, 1724-1735.	2.5	16
20	Losing the dogmatic view of cerebral autoregulation. Physiological Reports, 2021, 9, e14982.	1.7	73
21	Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. Journal of Applied Physiology, 2021, 131, 927-936.	2.5	18
22	Influence of an osteopathic manipulative intervention on cerebral blood velocity changes: do we have the whole story to appropriately interpret the data?. Journal of Osteopathic Medicine, 2021, 122, 69-70.	0.8	0
23	Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension. Physiological Reports, 2020, 8, e14389.	1.7	7
24	HIITing the brain with exercise: mechanisms, consequences and practical recommendations. Journal of Physiology, 2020, 598, 2513-2530.	2.9	92
25	Comparable blood velocity changes in middle and posterior cerebral arteries during and following acute highâ€intensity exercise in young fit women. Physiological Reports, 2020, 8, e14430.	1.7	25
26	Cerebral vs. Cardiovascular Responses to Exercise in Type 2 Diabetic Patients. Frontiers in Physiology, 2020, 11, 583155.	2.8	1
27	Six weeks of highâ€intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men. Physiological Reports, 2019, 7, e14185.	1.7	35
28	Cardiac remodeling after six weeks of high-intensity interval training to exhaustion in endurance-trained men. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H685-H694.	3.2	14
29	A Practical Approach to Cerebro-Somatic Near-Infrared Spectroscopy and Whole-Body Ultrasound. Journal of Cardiothoracic and Vascular Anesthesia, 2019, 33, S11-S37.	1.3	13
30	Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation. Experimental Physiology, 2019, 104, 1780-1789.	2.0	16
31	Letter to the Editor: On the need of considering cardiorespiratory fitness when examining the influence of sex on dynamic cerebral autoregulation. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1229-H1229.	3.2	9
32	Dynamic cerebral autoregulation is attenuated in young fit women. Physiological Reports, 2019, 7, e13984.	1.7	72
33	Effect of PPARÎ ³ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E65-E73.	3.5	17
34	Blood Pressure Measurement in Severely Obese Patients: Validation of the Forearm Approach in Different Arm Positions. American Journal of Hypertension, 2019, 32, 175-185.	2.0	14
35	Rosiglitazone lowers resting and blood pressure response to exercise in men with type 2 diabetes: <scp>A</scp> 1â€year randomized study. Diabetes, Obesity and Metabolism, 2018, 20, 1740-1750.	4.4	7
36	Targeting optimal blood pressure monitoring: what's next?. Journal of Thoracic Disease, 2018, 10, S3281-S3285.	1.4	6

#	Article	IF	Citations
37	Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation. Free Radical Biology and Medicine, 2018, 124, 104-113.	2.9	29
38	Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 318-326.	2.9	17
39	Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Autonomic Neuroscience: Basic and Clinical, 2017, 207, 37-47.	2.8	100
40	Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H701-H704.	3.2	69
41	Compromised Cerebrovascular Regulation and Cerebral Oxygenation in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2017, 6, .	3.7	32
42	Impact of type 2 diabetes on cardiorespiratory function and exercise performance. Physiological Reports, 2017, 5, e13145.	1.7	12
43	Uncoupling between cerebral perfusion and oxygenation during incremental exercise in an athlete with postconcussion syndrome: a case report. Physiological Reports, 2017, 5, e13131.	1.7	9
44	Nitrite and <i>S</i> -Nitrosohemoglobin Exchange Across the Human Cerebral and Femoral Circulation. Circulation, 2017, 135, 166-176.	1.6	63
45	Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness. Physiological Reports, 2017, 5, e13486.	1.7	60
46	Sympathetic Vasoconstrictor Responsiveness of the Leg Vasculature During Experimental Endotoxemia and Hypoxia in Humans. Critical Care Medicine, 2016, 44, 755-763.	0.9	8
47	Rosiglitazone influences adipose tissue distribution without deleterious impact on heart rate variability in coronary heart disease patients with type 2 diabetes. Clinical Autonomic Research, 2016, 26, 407-414.	2.5	6
48	Cerebral blood flow regulation, exercise and pregnancy: why should we care?. Clinical Science, 2016, 130, 651-665.	4.3	6
49	Determinants of Improvement In Left Ventricular Diastolic Function Following a 1-Year Lifestyle Modification Program in Abdominally Obese Men with Features of the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2016, 14, 483-491.	1.3	5
50	Physical activity counteracts the influence of mental work on blood pressure in healthy children. Physiology and Behavior, 2016, 164, 102-106.	2.1	2
51	Exercise Intolerance in Heart Failure: Did We Forget the Brain?. Canadian Journal of Cardiology, 2016, 32, 475-484.	1.7	26
52	Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients. Physiological Reports, 2015, 3, e12430.	1.7	38
53	High-Intensity Interval Exercise and Cerebrovascular Health: Curiosity, Cause, and Consequence. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 902-911.	4.3	150
54	Dietary Nitrate improves Cerebral Perfusion, in Young Adults during Exercise: Relationship to Cognitive Performance. FASEB Journal, 2015, 29, 989.2.	0.5	0

#	Article	IF	CITATIONS
55	Cerebral oxygenation in health and disease. Frontiers in Physiology, 2014, 5, 458.	2.8	7
56	Influence of Norepinephrine and Phenylephrine on Frontal Lobe Oxygenation During Cardiopulmonary Bypass in Patients with Diabetes. Journal of Cardiothoracic and Vascular Anesthesia, 2014, 28, 608-617.	1.3	19
57	Regarding "The Effects of an Exercise and Lifestyle Intervention Program on Cardiovascular, Metabolic Factors and Cognitive Performance in Middle-Aged Adults with Type 2 Diabetes: A Pilot Study. Can J Diabetes 2013;37:214–9― Canadian Journal of Diabetes, 2014, 38, 221.	0.8	0
58	Current state of knowledge of post-traumatic stress, sleeping problems, obesity and cardiovascular disease in paramedics. Emergency Medicine Journal, 2014, 31, 242-247.	1.0	89
59	Why is the neural control of cerebral autoregulation so controversial?. F1000prime Reports, 2014, 6, 14.	5.9	72
60	Impact of visceral obesity on cardiac parasympathetic activity in type 2 diabetics after coronary artery bypass graft surgery. Obesity, 2013, 21, 1578-1585.	3.0	11
61	Sex Differences in the Effects of Mental Work and Moderate-Intensity Physical Activity on Energy Intake in Young Adults. ISRN Nutrition, 2013, 2013, 1-6.	1.7	13
62	Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain. FASEB Journal, 2012, 26, 3012-3020.	0.5	69
63	Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension*. Critical Care Medicine, 2012, 40, 1873-1878.	0.9	24
64	Central and Peripheral Blood Flow During Exercise With a Continuous-Flow Left Ventricular Assist Device. Circulation: Heart Failure, 2011, 4, 554-560.	3.9	94
65	Mental Work Influences Cardiovascular Responses Through a Reduction in Cardiac Parasympathetic Modulation in Healthy Adults. Medicine and Science in Sports and Exercise, 2011, 43, 747.	0.4	1
66	Phenylephrine decreases frontal lobe oxygenation at rest but not during moderately intense exercise. Journal of Applied Physiology, 2010, 108, 1472-1478.	2.5	56
67	Phenylephrine but not Ephedrine Reduces Frontal Lobe Oxygenation Following Anesthesia-Induced Hypotension. Neurocritical Care, 2010, 12, 17-23.	2.4	100
68	Impact of & mp; Idquo; noncaloric & amp; rdquo; activity-related factors on the predisposition to obesity in children. Risk Management and Healthcare Policy, 2010, 3, 27.	2.5	3
69	Hemodynamic Stress Echocardiography in Patients Supported With a Continuous-Flow Left Ventricular Assist Device. JACC: Cardiovascular Imaging, 2010, 3, 854-859.	5.3	28
70	Evidence for a release of brainâ€derived neurotrophic factor from the brain during exercise. Experimental Physiology, 2009, 94, 1062-1069.	2.0	709
71	Cerebral nonâ€oxidative carbohydrate consumption in humans driven by adrenaline. Journal of Physiology, 2009, 587, 285-293.	2.9	37
72	Is Elevated PCWP during Exercise Sufficient to Reduce Exercise Capacity in Diabetics?. Medicine and Science in Sports and Exercise, 2009, 41, 1972-1973.	0.4	1

#	ARTICLE	IF	CITATION
73	Is Aspartame Really Safer in Reducing the Risk of Hypoglycemia During Exercise in Patients With Type 2 Diabetes?. Diabetes Care, 2007, 30, e59-e59.	8.6	24
74	Normalization of Diastolic Dysfunction in Type 2 Diabetics after Exercise Training. Medicine and Science in Sports and Exercise, 2007, 39, 1896-1901.	0.4	61
75	Impact of bariatric surgery–induced weight loss on heart rate variability. Metabolism: Clinical and Experimental, 2007, 56, 1425-1430.	3.4	62
76	Skeletal muscle endurance and muscle metabolism in patients with chronic heart failure. Canadian Journal of Cardiology, 2006, 22, 387-392.	1.7	21
77	Exercise capacity and impact of exercise training in patients after a Fontan procedure: A review. Canadian Journal of Cardiology, 2006, 22, 489-495.	1.7	45
78	Influence of glycemic control on pulmonary function and heart rate in response to exercise in subjects with type 2 diabetes mellitus. Metabolism: Clinical and Experimental, 2006, 55, 1532-1537.	3.4	22
79	Impact of exercise training on muscle function and ergoreflex in Fontan patients: A pilot study. International Journal of Cardiology, 2006, 107, 85-94.	1.7	63
80	Elevated peak exercise systolic blood pressure is not associated with reduced exercise capacity in subjects with Type 2 diabetes. Journal of Applied Physiology, 2006, 101, 893-897.	2.5	12