
Jacquin C Niles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5387326/publications.pdf Version: 2024-02-01

IACOLUN C NUES

#	Article	IF	CITATIONS
1	The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chemical Biology, 2022, 29, 824-839.e6.	5.2	14
2	Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chemical Biology, 2022, 29, 191-201.e8.	5.2	39
3	GeneTargeter: Automated <i>In Silico</i> Design for Genome Editing in the Malaria Parasite, <i>Plasmodium falciparum</i> . CRISPR Journal, 2022, 5, 155-164.	2.9	3
4	Functional genomics of RAP proteins and their role in mitoribosome regulation in Plasmodium falciparum. Nature Communications, 2022, 13, 1275.	12.8	12
5	Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nature Communications, 2022, 13, 2158.	12.8	13
6	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	12.6	25
7	Selective expression of variant surface antigens enables Plasmodium falciparum to evade immune clearance in vivo. Nature Communications, 2022, 13, .	12.8	5
8	An integrated platform for genome engineering and gene expression perturbation in Plasmodium falciparum. Scientific Reports, 2021, 11, 342.	3.3	29
9	Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as <i>Plasmodium</i> Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infectious Diseases, 2021, 7, 1680-1689.	3.8	14
10	MalDA, Accelerating Malaria Drug Discovery. Trends in Parasitology, 2021, 37, 493-507.	3.3	51
11	The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to <i>Plasmodium falciparum</i> parasite resistance. Science Translational Medicine, 2021, 13, .	12.4	25
12	A newly characterized malaria antigen on erythrocyte and merozoite surfaces induces parasite inhibitory antibodies. Journal of Experimental Medicine, 2021, 218, .	8.5	2
13	Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases, 2021, 7, 2764-2776.	3.8	35
14	Targeted Covalent Inhibition of <i>Plasmodium</i> FK506 Binding Protein 35. ACS Medicinal Chemistry Letters, 2020, 11, 2131-2138.	2.8	11
15	Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity. Cell Chemical Biology, 2020, 27, 806-816.e8.	5.2	56
16	Complex nutrient channel phenotypes despite Mendelian inheritance in a Plasmodium falciparum genetic cross. PLoS Pathogens, 2020, 16, e1008363.	4.7	31
17	Assessment of Biological Role and Insight into Druggability of the <i>Plasmodium falciparum</i> Protease Plasmepsin V. ACS Infectious Diseases, 2020, 6, 738-746.	3.8	25
18	Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. ELife, 2020, 9, .	6.0	20

JACQUIN C NILES

#	Article	IF	CITATIONS
19	Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. ELife, 2019, 8, .	6.0	51
20	ATG8 Is Essential Specifically for an Autophagy-Independent Function in Apicoplast Biogenesis in Blood-Stage Malaria Parasites. MBio, 2018, 9, .	4.1	56
21	EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nature Microbiology, 2018, 3, 1090-1098.	13.3	106
22	The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cellular Microbiology, 2017, 19, e12719.	2.1	56
23	Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2068-E2076.	7.1	56
24	Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science, 2017, 358, 518-522.	12.6	152
25	Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens. ELife, 2017, 6, .	6.0	47
26	Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites. Nature Communications, 2016, 7, 10727.	12.8	157
27	A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell, 2016, 166, 1423-1435.e12.	28.9	667
28	Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite. Nature Communications, 2016, 7, 11187.	12.8	48
29	Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Scientific Reports, 2015, 5, 11347.	3.3	57
30	Versatile control of Plasmodium falciparum gene expression with an inducible protein–RNA interaction. Nature Communications, 2014, 5, 5329.	12.8	44
31	Efficient CRISPR-Cas9–mediated genome editing in Plasmodium falciparum. Nature Methods, 2014, 11, 915-918.	19.0	205
32	An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum. Malaria Journal, 2013, 12, 373.	2.3	18
33	Direct and specific chemical control of eukaryotic translation with a synthetic RNA–protein interaction. Nucleic Acids Research, 2012, 40, e64-e64.	14.5	38
34	Malarial Parasites Accumulate Labile Zinc Pools. Chemistry and Biology, 2012, 19, 660-661.	6.0	1
35	Inducible Control of Subcellular RNA Localization Using a Synthetic Protein-RNA Aptamer Interaction. PLoS ONE, 2012, 7, e46868.	2.5	6
36	Deconvolution of Microarray Data Predicts Transcriptionally Regulated Protein Kinases of Plasmodium falciparum. , 2011, , .		0

JACQUIN C NILES

#	Article	IF	CITATIONS
37	Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis. Biomedical Optics Express, 2011, 2, 2484.	2.9	85
38	Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: Structures and mechanisms of product formation. Nitric Oxide - Biology and Chemistry, 2006, 14, 109-121.	2.7	173
39	Mass Spectrometric Identification of 4-Hydroxy-2,5-dioxo-imidazolidine-4-carboxylic Acid during Oxidation of 8-Oxoguanosine by Peroxynitrite and KHSO5/CoCl2. Chemical Research in Toxicology, 2004, 17, 1501-1509.	3.3	13
40	Spiroiminodihydantoin and Guanidinohydantoin Are the Dominant Products of 8-Oxoguanosine Oxidation at Low Fluxes of Peroxynitrite:  Mechanistic Studies with 180. Chemical Research in Toxicology, 2004, 17, 1510-1519.	3.3	77