List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5387031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrated system for automated measurement of airborne pollen based on electrostatic enrichment and image analysis with machine vision. Talanta, 2022, 237, 122908.	5.5	2
2	Enantioselective Reductive <scp>Cross oupling</scp> of Aryl/Alkenyl Bromides with Benzylic Chlorides <i>via</i> Photoredox/Biimidazoline Nickel Dual Catalysis. Chinese Journal of Chemistry, 2022, 40, 1033-1038.	4.9	21
3	Nanoliter-scale liquid metering and droplet generation based on a capillary array for high throughput screening. Talanta, 2021, 221, 121613.	5.5	3
4	A flexible and cost-effective manual droplet operation platform for miniaturized cell assays and single cell analysis. Talanta, 2021, 224, 121874.	5.5	2
5	Research Progress of Microfluidic Technique in Synthesis of Micro/Nano Materials. Acta Chimica Sinica, 2021, 79, 809.	1.4	4
6	A microfluidic robot for rare cell sorting based on machine vision identification and multi-step sorting strategy. Talanta, 2021, 226, 122136.	5.5	10
7	Petrel Probe: An Integrated In Situ Sampling and Injection Interface for Fast, High-Efficiency Liquid Chromatography–Mass Spectrometry Analysis. Analytical Chemistry, 2021, 93, 10114-10121.	6.5	3
8	Handheld laser-induced fluorescence detection systems with different optical configurations. Talanta, 2021, 230, 122329.	5.5	8
9	LIFGO: A modular laser-induced fluorescence detection system based on plug-in blocks. Talanta, 2021, 239, 123063.	5.5	4
10	Nanoliter-Scale Droplet–Droplet Microfluidic Microextraction Coupled with MALDI-TOF Mass Spectrometry for Metabolite Analysis of Cell Droplets. Analytical Chemistry, 2020, 92, 8759-8767.	6.5	24
11	LC-Swan Probe: An Integrated In Situ Sampling Interface for Liquid Chromatography Separation and Mass Spectrometry Analysis. Analytical Chemistry, 2020, 92, 9214-9222.	6.5	12
12	Automated, flexible and versatile manipulation of nanoliter-to-picoliter droplets based on sequential operation droplet array technique. TrAC - Trends in Analytical Chemistry, 2020, 124, 115812.	11.4	32
13	Consecutive and automatic detection of multi-gene mutations from colorectal cancer samples by coupling droplet array-based capillary electrophoresis and PCR-RFLP. Analytical and Bioanalytical Chemistry, 2020, 412, 3037-3049.	3.7	1
14	A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay. Talanta, 2020, 217, 120997.	5.5	17
15	Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals. Analytical Chemistry, 2019, 91, 10132-10140.	6.5	13
16	Forming a Large-Scale Droplet Array in a Microcage Array Chip for High-Throughput Screening. Analytical Chemistry, 2019, 91, 10757-10763.	6.5	34
17	Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode. Analytical Chemistry, 2019, 91, 4995-5003.	6.5	36
18	Mapping the Mouse Cell Atlas by Microwell-Seq. Cell, 2018, 172, 1091-1107.e17.	28.9	1,068

#	Article	IF	CITATIONS
19	A Microfluidic Droplet Array System for Cell-Based Drug Combination Screening. Methods in Molecular Biology, 2018, 1771, 203-211.	0.9	9
20	Quantitative Identification of Basic Growth Channels for Formation of Monodisperse Nanocrystals. Journal of the American Chemical Society, 2018, 140, 5474-5484.	13.7	39
21	Manipulating Femtoliter to Picoliter Droplets by Pins for Single Cell Analysis and Quantitative Biological Assay. Analytical Chemistry, 2018, 90, 5810-5817.	6.5	43
22	A Low-Cost Palmtop High-Speed Capillary Electrophoresis Bioanalyzer with Laser Induced Fluorescence Detection. Scientific Reports, 2018, 8, 1791.	3.3	44
23	Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay. Analytical Chemistry, 2018, 90, 3253-3261.	6.5	38
24	A robust and extendable sheath flow interface with minimal dead volume for coupling CE with ESI-MS. Talanta, 2018, 180, 376-382.	5.5	20
25	Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Analytical Chemistry, 2018, 90, 5430-5438.	6.5	167
26	Maintenance of human haematopoietic stem and progenitor cells in vitro using a chemical cocktail. Cell Discovery, 2018, 4, 59.	6.7	13
27	Femtomole-Scale High-Throughput Screening of Protein Ligands with Droplet-Based Thermal Shift Assay. Analytical Chemistry, 2017, 89, 6678-6685.	6.5	19
28	3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode. ACS Applied Materials & Interfaces, 2017, 9, 11837-11845.	8.0	30
29	Droplet-Based Multivolume Digital Polymerase Chain Reaction by a Surface-Assisted Multifactor Fluid Segmentation Approach. Analytical Chemistry, 2017, 89, 822-829.	6.5	64
30	Three-Dimensional Cell Culture and Drug Testing in a Microfluidic Sidewall-Attached Droplet Array. Analytical Chemistry, 2017, 89, 10153-10157.	6.5	61
31	Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip. Analytical Chemistry, 2017, 89, 9009-9016.	6.5	31
32	A compact short apillary based highâ€speed capillary electrophoresis bioanalyzer. Electrophoresis, 2016, 37, 2376-2383.	2.4	21
33	Nonâ€ŧapered PTFE capillary as robust and stable nanoelectrospray emitter for electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 62-67.	1.5	4
34	Microdroplet chain array for cell migration assays. Lab on A Chip, 2016, 16, 4658-4665.	6.0	37
35	A handheld laser-induced fluorescence detector for multiple applications. Talanta, 2016, 150, 135-141.	5.5	46
36	Microfluidics for cell-based high throughput screening platforms—A review. Analytica Chimica Acta, 2016, 903, 36-50.	5.4	216

#	Article	IF	CITATIONS
37	Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot. Scientific Reports, 2015, 5, 9551.	3.3	91
38	Establishment of a finite element model for extracting chemical reaction kinetics in a micro-flow injection system with high throughput sampling. Talanta, 2015, 140, 176-182.	5.5	5
39	Swan Probe: A Nanoliter-Scale and High-Throughput Sampling Interface for Coupling Electrospray Ionization Mass Spectrometry with Microfluidic Droplet Array and Multiwell Plate. Analytical Chemistry, 2014, 86, 10796-10803.	6.5	56
40	Nanoliter-Scale Protein Crystallization and Screening with a Microfluidic Droplet Robot. Scientific Reports, 2014, 4, 5046.	3.3	68
41	Cell-Based Drug Combination Screening with a Microfluidic Droplet Array System. Analytical Chemistry, 2013, 85, 6740-6747.	6.5	117
42	Sequential Operation Droplet Array: An Automated Microfluidic Platform for Picoliter-Scale Liquid Handling, Analysis, and Screening. Analytical Chemistry, 2013, 85, 6723-6731.	6.5	84
43	Droplet-Based Microfluidic Flow Injection System with Large-Scale Concentration Gradient by a Single Nanoliter-Scale Injection for Enzyme Inhibition Assay. Analytical Chemistry, 2012, 84, 446-452.	6.5	95
44	Microfluidic sequential injection analysis system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves. Science China Chemistry, 2012, 55, 531-536.	8.2	2
45	Nanoliter droplet array for microRNA detection based on enzymatic stem-loop probes ligation and SYBR Green real-time PCR. Talanta, 2011, 85, 1760-1765.	5.5	21
46	Nanolitre droplet array for real time reverse transcription polymerase chain reaction. Lab on A Chip, 2011, 11, 1545.	6.0	55
47	Fabrication of low-melting-point alloy microelectrode and monolithic spray tip for integration of glass chip with electrospray ionization mass spectrometry. Talanta, 2010, 81, 1069-1075.	5.5	17
48	Integrated Droplet Analysis System with Electrospray Ionization-Mass Spectrometry Using a Hydrophilic Tongue-Based Droplet Extraction Interface. Analytical Chemistry, 2010, 82, 8361-8366.	6.5	80
49	Capillary-based microfluidic analysis systems. Analytical and Bioanalytical Chemistry, 2009, 393, 63-66.	3.7	10
50	A microfluidic chip based sequential injection system with trapped droplet liquid–liquid extraction and chemiluminescence detection. Lab on A Chip, 2006, 6, 1387-1389.	6.0	52
51	Microfluidic Sequential Injection Analysis in a Short Capillary. Analytical Chemistry, 2006, 78, 6404-6410.	6.5	50
52	A microfluidic chip based liquid–liquid extraction system with microporous membrane. Analytica Chimica Acta, 2006, 556, 151-156.	5.4	77
53	Microfluidic chip-based liquid–liquid extraction and preconcentration using a subnanoliter-droplet trapping technique. Lab on A Chip, 2005, 5, 719-725.	6.0	80
54	Sample introduction for microfluidic systems. Analytical and Bioanalytical Chemistry, 2004, 378, 49-51.	3.7	16

#	Article	IF	CITATIONS
55	Bonding of Glass Microfluidic Chips at Room Temperatures. Analytical Chemistry, 2004, 76, 5597-5602.	6.5	156
56	A High-Throughput Continuous Sample Introduction Interface for Microfluidic Chip-based Capillary Electrophoresis Systems. Analytical Chemistry, 2002, 74, 1223-1231.	6.5	102
57	Development of a low-cost microfluidic capillary-electrophoresis system coupled with flow-injection and sequential-injection sample introduction (review). Fresenius' Journal of Analytical Chemistry, 2001, 370, 978-983.	1.5	22
58	Developments in Flow Injection-Capillary Electrophoresis Systems Analytical Sciences, 2000, 16, 197-203.	1.6	25