Dan Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5386835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous Bimetallic Phosphide Ni ₂ Pâ€Fe ₂ P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Advanced Functional Materials, 2021, 31, .	7.8	385
2	Pickering emulsion stabilized by organoclay and intermediately hydrophobic nanosilica for high-temperature conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125694.	2.3	13
3	Synthesis of sodium nanoparticles for promising extraction of heavy oil. Materials Today Physics, 2021, 16, 100276.	2.9	6
4	Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends in Chemistry, 2021, 3, 485-498.	4.4	105
5	Rational design of core-shell-structured CoP @FeOOH for efficient seawater electrolysis. Applied Catalysis B: Environmental, 2021, 294, 120256.	10.8	141
6	Plant growth–inspired design of high-performance composite electrode nanostructures for supercapacitors. Materials Today Physics, 2020, 12, 100138.	2.9	12
7	Smart Pickering water-in-oil emulsion by manipulating interactions between nanoparticles and surfactant as potential oil-based drilling fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124246.	2.3	31
8	Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy and Environmental Science, 2020, 13, 3439-3446.	15.6	507
9	High-Performance Ag-Modified Bi _{0.5} Sb _{1.5} Te ₃ Films for the Flexible Thermoelectric Generator. ACS Applied Materials & Interfaces, 2020, 12, 7358-7365.	4.0	77
10	Phase Inversion of Pickering Emulsions by Electrolyte for Potential Reversible Water-in-Oil Drilling Fluids. Energy & Fuels, 2020, 34, 1317-1328.	2.5	14
11	Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8096-8103.	5.2	73
12	A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 19728-19732.	5.2	114
13	Interactions between amphiphilic Janus nanosheets and a nonionic polymer in aqueous and biphasic systems. Soft Matter, 2019, 15, 7472-7478.	1.2	12
14	Electrostatic-attraction-induced high internal phase emulsion for large-scale synthesis of amphiphilic Janus nanosheets. Chemical Communications, 2019, 55, 1318-1321.	2.2	19
15	An improved method to synthesize nanoscale graphene oxide using much less acid. Materials Today Physics, 2019, 9, 100097.	2.9	18
16	Electrochemical Performance of Freeâ€Standing and Flexible Graphene and TiO ₂ Composites with Different Conductive Polymers as Electrodes for Supercapacitors. Chemistry - A European Journal, 2019, 25, 7903-7911.	1.7	26
17	Freestanding RGO—Co ₃ O ₄ —PPy Composite Films as Electrodes for Supercapacitors. Energy Technology, 2019, 7, 1800606.	1.8	25
18	Poly(sodium 4-styrenesulfonate) Stabilized Janus Nanosheets in Brine with Retained Amphiphilicity. Langmuir, 2018, 34, 3694-3700.	1.6	15

Dan Luo

#	Article	IF	CITATIONS
19	Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 13619-13623.	5.2	169
20	Synthesis of graphene-based amphiphilic Janus nanosheets via manipulation of hydrogen bonding. Carbon, 2018, 126, 105-110.	5.4	36
21	Comparative study on chemical reduction of free-standing flexible GO films and their cyclic voltammetry performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 630-637.	2.3	9
22	Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy, 2018, 53, 492-500.	8.2	216
23	Colloidal Stability of Graphene-Based Amphiphilic Janus Nanosheet Fluid. Chemistry of Materials, 2017, 29, 3454-3460.	3.2	36
24	Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41, 327-336.	8.2	252
25	Secondary Oil Recovery Using Graphene-Based Amphiphilic Janus Nanosheet Fluid at an Ultralow Concentration. Industrial & Engineering Chemistry Research, 2017, 56, 11125-11132.	1.8	87
26	Experimental Investigation of the Transformation of Oil Shale with Fracturing Fluids under Microwave Heating in the Presence of Nanoparticles. Energy & Fuels, 2017, 31, 10348-10357.	2.5	35
27	Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7711-7716.	3.3	196
28	A Model of the Fractal Fluid Loss Coefficient and its Effect on Fracture Length and Well Productivity. Chemistry and Technology of Fuels and Oils, 2015, 51, 168-180.	0.2	1