Michael E Mcconney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5386751/publications.pdf

Version: 2024-02-01

136885 4,021 63 32 citations papers

58 h-index g-index 63 63 63 4885 docs citations times ranked citing authors all docs

138417

#	Article	IF	CITATIONS
1	Topological Antiferromagnetic Van der Waals Phase in Topological Insulator/Ferromagnet Heterostructures Synthesized by a CMOSâ€Compatible Sputtering Technique. Advanced Materials, 2022, 34, e2108790.	11.1	9
2	Role of Alicyclic Conformation-Isomerization in the Photomechanical Performance of Azobenzene-Functionalized Cross-Linked Polyimides Containing Tetra-Substituted Cyclohexane Moieties. ACS Macro Letters, 2021, 10, 278-283.	2.3	17
3	Advances in Transparent Planar Optics: Enabling Large Aperture, Ultrathin Lenses. Advanced Optical Materials, 2021, 9, 2001692.	3.6	43
4	Size, weight, and power breakthrough in nonmechanical beam and line-of-sight steering with geo-phase optics. Applied Optics, 2021, 60, G154.	0.9	8
5	A Different Perspective on Cholesteric Liquid Crystals Reveals Unique Color and Polarization Changes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37400-37408.	4.0	9
6	Electro- and Photo-Driven Orthogonal Switching of a Helical Superstructure Enabled by an Axially Chiral Molecular Switch. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55215-55222.	4.0	14
7	Electrically Induced Splitting of the Selective Reflection in Polymer Stabilized Cholesteric Liquid Crystals. Advanced Optical Materials, 2020, 8, 2000914.	3.6	23
8	Large-area ultrathin Te films with substrate-tunable orientation. Nanoscale, 2020, 12, 12613-12622.	2.8	22
9	Homoepitaxial Mn3Ge films on ultra-thin Fe seed layer with high perpendicular magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 2020, 514, 167146.	1.0	O
10	Director grating and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a helicoidal polymer network. Journal of Applied Physics, 2020, 127, 125502.	1.1	0
11	Reconfigurable Reflective Colors in Holographically Patterned Liquid Crystal Gels. ACS Photonics, 2020, 7, 1978-1982.	3.2	15
12	Integrated Tunable Magnetoelectric RF Inductors. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 951-963.	2.9	20
13	Temperature dependent resonant microwave absorption in perpendicular magnetic anisotropy epitaxial films of a spinel ferrite. Journal of Applied Physics, 2019, 125, .	1.1	5
14	Optically detected ferromagnetic resonance in diverse ferromagnets via nitrogen vacancy centers in diamond. Journal of Applied Physics, 2019, 126, .	1.1	17
15	Optimization of acoustically-driven ferromagnetic resonance devices. Journal of Applied Physics, 2019, 126, .	1.1	13
16	Photoresponsive Structural Color in Liquid Crystalline Materials. Advanced Optical Materials, 2019, 7, 1900429.	3 . 6	34
17	Parallel pumping of spin waves in a ferromagnet revisited. Journal of Magnetism and Magnetic Materials, 2019, 490, 165486.	1.0	5
18	Photonic crystallization of two-dimensional MoS ₂ for stretchable photodetectors. Nanoscale, 2019, 11, 13260-13268.	2.8	43

#	Article	IF	Citations
19	Giant surfactants for the construction of automatic liquid crystal alignment layers. Journal of Materials Chemistry C, 2019, 7, 8500-8514.	2.7	16
20	Crystal growth and structural analysis of perovskite chalcogenide BaZrS ₃ and Ruddlesden–Popper phase Ba ₃ Zr ₂ S ₇ . Journal of Materials Research, 2019, 34, 3819-3826.	1.2	36
21	Cycloidal diffractive waveplates fabricated using a high-power diode-pumped solid-state laser operating at 532Ânm. Journal of the Optical Society of America B: Optical Physics, 2019, 36, D136.	0.9	6
22	Spin-orbit torque and spin pumping in YIG/Pt with interfacial insertion layers. Applied Physics Letters, 2018, 112, .	1.5	28
23	Integrated magnetoelectric devices: Filters, pico-Tesla magnetometers, and ultracompact acoustic antennas. MRS Bulletin, 2018, 43, 841-847.	1.7	28
24	Characterization of magnetomechanical properties in FeGaB thin films. Applied Physics Letters, 2018, 113, .	1.5	53
25	Electrical Control of Unpolarized Reflectivity in Polymerâ€Stabilized Cholesteric Liquid Crystals at Oblique Incidence. Advanced Optical Materials, 2018, 6, 1800957.	3.6	17
26	Optimal Bandgap in a 2D Ruddlesden–Popper Perovskite Chalcogenide for Single-Junction Solar Cells. Chemistry of Materials, 2018, 30, 4882-4886.	3.2	49
27	Switchable, broadband, polarization-independent diffractive optical components and systems. , 2018, , .		3
28	Electrically switchable large, thin, and fast optics. , 2018, , .		3
29	Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nature Communications, 2017, 8, 296.	5.8	299
30	Coexistence of Low Damping and Strong Magnetoelastic Coupling in Epitaxial Spinel Ferrite Thin Films. Advanced Materials, 2017, 29, 1701130.	11.1	71
31	Amorphous Boron Nitride: A Universal, Ultrathin Dielectric For 2D Nanoelectronics. Advanced Functional Materials, 2016, 26, 2640-2647.	7.8	90
32	Nanoelectronics: Amorphous Boron Nitride: A Universal, Ultrathin Dielectric For 2D Nanoelectronics (Adv. Funct. Mater. 16/2016). Advanced Functional Materials, 2016, 26, 2771-2771.	7.8	2
33	Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces. Journal of Materials Research, 2016, 31, 967-974.	1.2	44
34	Voxelated liquid crystal elastomers. Science, 2015, 347, 982-984.	6.0	863
35	Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Optical Materials Express, 2014, 4, 1465.	1.6	63
36	The contribution of chirality and crosslinker concentration to reflection wavelength tuning in structurally chiral nematic gels. Journal of Materials Chemistry C, 2014, 2, 132-138.	2.7	9

#	Article	IF	Citations
37	Color-Tunable Mirrors Based on Electrically Regulated Bandwidth Broadening in Polymer-Stabilized Cholesteric Liquid Crystals. ACS Photonics, 2014, 1, 1033-1041.	3.2	101
38	Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014, 104, .	1.5	178
39	Topography from Topology: Photoinduced Surface Features Generated in Liquid Crystal Polymer Networks. Advanced Materials, 2013, 25, 5880-5885.	11.1	194
40	Electrically Induced Color Changes in Polymerâ€Stabilized Cholesteric Liquid Crystals. Advanced Optical Materials, 2013, 1, 417-421.	3.6	63
41	Contactless, photoinitiated snap-through in azobenzene-functionalized polymers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18792-18797.	3.3	92
42	Continuous wave mirrorless lasing in cholesteric liquid crystals with a pitch gradient across the cell gap. Optics Letters, 2012, 37, 2904.	1.7	42
43	A New Twist on Scanning Thermal Microscopy. Nano Letters, 2012, 12, 1218-1223.	4.5	16
44	Responsive plasma polymerized ultrathin nanocomposite films. Polymer, 2012, 53, 4686-4693.	1.8	7
45	Dynamic high contrast reflective coloration from responsive polymer/cholesteric liquid crystal architectures. Soft Matter, 2012, 8, 318-323.	1.2	38
46	Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization. Chemical Communications, 2011, 47, 505-507.	2.2	64
47	Nanorod decorated nanowires as highly efficient SERS-active hybrids. Journal of Materials Chemistry, 2011, 21, 15218.	6.7	32
48	Thermally Induced, Multicolored Hyperâ€Reflective Cholesteric Liquid Crystals. Advanced Materials, 2011, 23, 1453-1457.	11.1	84
49	Liquid Crystals: Thermally Induced, Multicolored Hyper-Reflective Cholesteric Liquid Crystals (Adv.) Tj ETQq $1\ 1\ 0$.	784314 rg	BT/Overlock
50	Probing Soft Matter with the Atomic Force Microscopies: Imaging and Force Spectroscopy. Polymer Reviews, 2010, 50, 235-286.	5.3	215
51	Dynamic color in stimuli-responsive cholesteric liquid crystals. Journal of Materials Chemistry, 2010, 20, 9832.	6.7	276
52	A Facile Fabrication Strategy for Patterning Protein Chain Conformation in Silk Materials. Advanced Materials, 2010, 22, 115-119.	11.1	33
53	Metalized Porous Interference Lithographic Microstructures via Biofunctionalization. Advanced Materials, 2010, 22, 1369-1373.	11.1	17
54	Spontaneous Selfâ€Folding in Confined Ultrathin Polymer Gels. Advanced Materials, 2010, 22, 1263-1268.	11.1	37

#	Article	IF	CITATION
55	Swelling-Induced Folding in Confined Nanoscale Responsive Polymer Gels. ACS Nano, 2010, 4, 2327-2337.	7.3	37
56	Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (<i>Cupiennius salei</i>). Journal of the Royal Society Interface, 2009, 6, 681-694.	1.5	44
57	Bioinspired Material Approaches to Sensing. Advanced Functional Materials, 2009, 19, 2527-2544.	7.8	93
58	Facile Plasmaâ€Enhanced Deposition of Ultrathin Crosslinked Amino Acid Films for Conformal Biometallization. Small, 2009, 5, 741-749.	5.2	26
59	Biologically inspired design of hydrogel-capped hair sensors for enhanced underwater flow detection. Soft Matter, 2009, 5, 292-295.	1.2	114
60	Hydrogel microstructures combined with electrospun fibers and photopatterning for shape and modulus control. Polymer, 2008, 49, 5284-5293.	1.8	34
61	Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys). Journal of the Royal Society Interface, 2007, 4, 1135-1143.	1.5	53
62	Polymeric Nanolayers as Actuators for Ultrasensitive Thermal Bimorphs. Nano Letters, 2006, 6, 730-734.	4.5	88
63	Thermo-Optical Arrays of Flexible Nanoscale Nanomembranes Freely Suspended over Microfabricated Cavities as IR Microimagers. Chemistry of Materials, 2006, 18, 2632-2634.	3.2	66