Pawan Kumar Khanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/53865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics, 2005, 93, 117-121.	4.0	352
2	Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide. Journal of Molecular Catalysis A, 2010, 323, 84-90.	4.8	188
3	Metal complexes driven from Schiff bases and semicarbazones forÂbiomedical and allied applications: a review. Materials Today Chemistry, 2019, 14, 100195.	3.5	166
4	In situ synthesis of silver nano-particles in polymethylmethacrylate. Materials Chemistry and Physics, 2007, 104, 367-372.	4.0	165
5	Photodegradation of organic dyes based on anatase and rutile TiO ₂ nanoparticles. RSC Advances, 2016, 6, 2746-2759.	3.6	117
6	Selenium nanoparticles: a review on synthesis and biomedical applications. Materials Advances, 2022, 3, 1415-1431.	5.4	108
7	Production and luminescent properties of CdSe and CdS nanoparticle–polymer composites. Journal of Luminescence, 2004, 109, 163-172.	3.1	73
8	Synthesis and optical properties of CdS/PVA nanocomposites. Materials Chemistry and Physics, 2005, 94, 454-459.	4.0	71
9	Polyaniline–CdS nanocomposite from organometallic cadmium precursor. Materials Chemistry and Physics, 2004, 87, 49-52.	4.0	66
10	Synthesis of oleic acid capped copper nano-particles via reduction of copper salt by SFS. Materials Chemistry and Physics, 2008, 110, 21-25.	4.0	55
11	Synthesis, Characterization, and Studies of PVA/Co-Doped ZnO Nanocomposite Films. International Journal of Green Nanotechnology, 2012, 4, 408-416.	0.3	45
12	Transparent ZnO/polycarbonate nanocomposite for food packaging application. Nanocomposites, 2015, 1, 106-112.	4.2	45
13	A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Advances, 2015, 5, 63777-63785.	3.6	44
14	Dinuclear diselenolenes derived from cycloalkeno-1,2,3-selenadiazoles and tetrakis(triphenylphosphine)palladium. Journal of the Chemical Society Dalton Transactions, 1999, , 791-794.	1.1	41
15	Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media. Journal of Hazardous Materials, 2011, 186, 2051-2059.	12.4	41
16	Novel synthesis of silver selenide nano-powder from silver nitrate and organo-selenium compound. Materials Letters, 2004, 58, 1030-1034.	2.6	40
17	The processing of CdSe/Polymer nanocomposites via solution organometallic chemistry. Materials Chemistry and Physics, 2006, 97, 288-294.	4.0	37
18	Effect of reducing agent on the synthesis of nickel nanoparticles. Materials Letters, 2009, 63, 1384-1386.	2.6	34

2

Pawan Kumar Khanna

#	Article	IF	CITATIONS
19	Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: Featured PTh, PPy and PANI. Vacuum, 2018, 155, 159-168.	3.5	34
20	Chemically designed Pt/PPy nano-composite for effective LPG gas sensor. Nanoscale, 2014, 6, 2746.	5.6	33
21	Polymer based graphene/titanium dioxide nanocomposite (CTNC): an emerging and efficient thermoelectric material. Dalton Transactions, 2015, 44, 19248-19255.	3.3	33
22	Impact of microwave irradiation on cyclo-octeno-1,2,3-selenadiazole: formation of selenium nanoparticles and their polymorphs. RSC Advances, 2015, 5, 44756-44763.	3.6	32
23	Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential. Materials Advances, 2021, 2, 1204-1228.	5.4	32
24	BaTiO3 nanostructures for H2S gas sensor: Influence of band-gap, size and shape on sensing mechanism. Vacuum, 2017, 146, 455-461.	3.5	30
25	Band engineered p-type RGO–CdS–PANI ternary nanocomposites for thermoelectric applications. Sustainable Energy and Fuels, 2017, 1, 1766-1773.	4.9	26
26	Synthesis of Nanosilver Using a Vitamin C Derivative and Studies on Radiation Protection. Cancer Biotherapy and Radiopharmaceuticals, 2011, 26, 249-257.	1.0	24
27	Single Step Synthesis of Nitroâ€Functionalized Hydroxylâ€Terminated Polybutadiene. Propellants, Explosives, Pyrotechnics, 2013, 38, 748-753.	1.6	24
28	Synthesis and characterisation of new 2-bromovinyl selenides and their platinum group metal complexes. Journal of Organometallic Chemistry, 1993, 450, 109-114.	1.8	23
29	La doped BaTiO3 nanostructures for room temperature sensing of NO2/NH3: Focus on La concentration and sensing mechanism. Vacuum, 2019, 166, 37-44.	3.5	23
30	CuSbSe ₂ /TiO ₂ : novel type-II heterojunction nano-photocatalyst. Materials Chemistry Frontiers, 2019, 3, 437-449.	5.9	22
31	Progress of hybrid nanocomposite materials for thermoelectric applications. Materials Advances, 2021, 2, 1927-1956.	5.4	22
32	Synthesis of novel Zn(II) and Cd(II) complexes of semicarbazones and their utility as precursors for respective metal selenide quantum dots. Polyhedron, 2017, 123, 99-110.	2.2	21
33	Modified iron oxide nanoparticles as burn rate enhancer in composite solid propellants. Vacuum, 2018, 156, 483-491.	3.5	21
34	Band Engineered I/III/V–VI Binary Metal Selenide/MWCNT/PANI Nanocomposites for Potential Room Temperature Thermoelectric Applications. ACS Applied Energy Materials, 2019, 2, 2680-2691.	5.1	21
35	An efficient solventless synthesis of cycloalkeno-1,2,3-selenadiazoles, their antimicrobial studies, and comparison with parent semicarbazones. Chemistry of Heterocyclic Compounds, 2015, 51, 102-106.	1.2	20
36	Rapid microwave synthesis of white light emitting magic sized nano clusters of CdSe: role of oleic acid. RSC Advances, 2015, 5, 76733-76742.	3.6	19

#	Article	IF	CITATIONS
37	The reactions of tetrakis(triphenylphosphine)platinum and -palladium with selenium: X-Ray crystal structure of [Pt(Se2CH2)(PPh3)2]. Heteroatom Chemistry, 1995, 6, 519-524.	0.7	18
38	Synthesis of shape and size controlled copper indium diselenide (CuInSe ₂) via extrusion of selenium from 1,2,3-selenadiazole. RSC Advances, 2016, 6, 86137-86150.	3.6	18
39	Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 349, 73-90.	3.9	18
40	Cellular radioprotecting potential of glyzyrrhizic acid, silver nanoparticle and their complex. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 723, 51-57.	1.7	17
41	Core–shell ZnSe–CdSe quantum dots: a facile approach via decomposition of cyclohexeno-1,2,3-selenadiazole. RSC Advances, 2014, 4, 17526-17532.	3.6	17
42	Titanium dioxide (TiO ₂)-decorated silver indium diselenide (AgInSe ₂): novel nano-photocatalyst for oxidative dye degradation. Inorganic Chemistry Frontiers, 2018, 5, 2242-2256.	6.0	17
43	Nanostructured molybdenum dichalcogenides: a review. Materials Advances, 2022, 3, 5672-5697.	5.4	16
44	Synthesis and In-Vitro Antimycobacterial Studies of Cysteine Capped silver Nano-Particles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 554-558.	0.6	15
45	In situ SeO ₂ promoted synthesis of CdSe/PPy and Se/PPy nanocomposites and their utility in optical sensing for detection of Hg ²⁺ ions. RSC Advances, 2015, 5, 92818-92828.	3.6	15
46	Reaction Tailoring for Synthesis of Phaseâ€Pure Nanocrystals of AgInSe ₂ , Cu ₃ SbSe ₃ and CuSbSe ₂ . ChemistrySelect, 2018, 3, 2854-2866.	1.5	14
47	"Green―and controlled synthesis of single family "magic-size―cadmium selenide nanocrystals by the use of cyclo-hexeno-1,2,3-selenadiazole an organoselenium compound. CrystEngComm, 2010, 12, 2762.	2.6	13
48	"Yellow emitting―magic-size cadmium selenide nanocrystals via a simplified spray pyrolysis method. Current Applied Physics, 2011, 11, 809-811.	2.4	13
49	Solventless synthesis of new 4,5-disubstituted 1,2,3-selenadiazole derivatives and their antimicrobial studies. Cogent Chemistry, 2016, 2, 1144670.	2.5	12
50	Green Synthesis of Silver Nano-Particles by Use of Edible Oils. Journal of Nanoscience and Nanotechnology, 2018, 18, 386-393.	0.9	12
51	Synthesis of Azide-Functionalized Hydroxyl-Terminated Polybutadiene. Journal of Energetic Materials, 2016, 34, 440-449.	2.0	11
52	1,2,3-Selenadiazole-driven single family MSNCs of CdSe. New Journal of Chemistry, 2017, 41, 14713-14722.	2.8	11
53	Ternary metal selenide/MWCNT/PANI: potential n-type nanohybrids for room-temperature thermoelectric applications. Dalton Transactions, 2019, 48, 14497-14504.	3.3	11
54	"Green―Synthesis of Cadmium Selenide Nanocrystals: The Scope of 1,2,3-Selendiazoles in the Synthesis of Magic-Size Nanocrystals and Quantum Dots. Journal of Nanoscience and Nanotechnology, 2011, 11, 5137-5142.	0.9	10

#	Article	IF	CITATIONS
55	Microwave synthesis of bis(cycloalkeno)-1,4-diselenins: a novel source of Se for CdSe QDs. New Journal of Chemistry, 2017, 41, 7438-7446.	2.8	10
56	Preparation of CdSe Quantum Dots via Thermolysis of a Novel Single Source Cd/Se Precursor Derived from Cyclohexeno-1,2,3-selenadiazole. Chemistry Letters, 2009, 38, 676-677.	1.3	9
57	Co/Co ₃ O ₄ Based Nanoparticles and Their Polymer Composites for Tuned Electromagnetic Interference Shielding Application. Journal of Nanoscience and Nanotechnology, 2020, 20, 2847-2857.	0.9	8
58	Biotoxicity of CdS/CdSe Core-Shell Nano-Structures. Advances in Nanoparticles, 2016, 05, 1-8.	1.0	8
59	Particle size-independent induction of leucism in Drosophila melanogaster by silver: nano vs. micro. Metallomics, 2016, 8, 1243-1254.	2.4	7
60	Surface Engineering of CdS Quantum Dots for Photocatalytic Applications under Direct Sunlight. ChemistrySelect, 2018, 3, 8491-8500.	1.5	6
61	Improved and Efficient Synthesis of Bis(cycloocteno)â€1,4â€Diselenin in Highâ€Boiling Solvents. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2006, 36, 787-791.	0.6	5
62	CdSe–PVP QDs for Degradation of Methylene Blue via Photocatalytic Oxidative Cleavage Under Mild Visible Light. Journal of Nanoscience and Nanotechnology, 2018, 18, 143-155.	0.9	5
63	White Emitting Magic Sized CdSe Nanoclusters Using Edible Oils: A Green Approach. Journal of Nanoscience and Nanotechnology, 2020, 20, 2946-2954.	0.9	5
64	Instant Synthesis of White Lightâ€Emitting Cd Chalcogenide Nanoclusters Using Homogenization Method. ChemistrySelect, 2017, 2, 11775-11782.	1.5	4
65	Schiff base metal complexes driven quantum dots of ZnSe and CdSe. Inorganic Chemistry Communication, 2022, 135, 109070.	3.9	4
66	Synthesis, Characterization and Nanochemistry of Novel Antibacterial Copper (II) Semicarbazone Complexes. ChemistrySelect, 2018, 3, 7548-7560.	1.5	3
67	Synthesis of biologically active silver nanoparticles using N-containing compounds: the dual role of semicarbazones. New Journal of Chemistry, 2021, 45, 22369-22377.	2.8	3
68	Synthesis, Characterization And Bio-Evaluation Of Core-Shell QDs With ZnSe, CdS And CdSe Combinations. Advanced Materials Letters, 2017, 8, 352-361.	0.6	3
69	Ternary metal selenides by use of 4-nitroacetophenone selenosemicarbazone: Application of selenium Schiff base in nanotechnology. Inorganic Chemistry Communication, 2022, 139, 109334.	3.9	2
70	Studies on Effect of Nitrogen Rich Explosives on the Morphology, Thermal and Combustion Behaviour of B/KNO ₃ Composition. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.6	1