Gerald Jurasinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5386426/publications.pdf

Version: 2024-02-01

70 papers 3,205 citations

28 h-index 52 g-index

106 all docs

106
docs citations

106 times ranked 4816 citing authors

#	Article	IF	CITATIONS
1	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	27.8	580
2	Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia, 2009, 159, 15-26.	2.0	182
3	Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications, 2020, 11, 1644.	12.8	168
4	High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 2016, 22, 4134-4149.	9.5	144
5	Resurveying historical vegetation data $\hat{a} \in \hat{a}$ opportunities and challenges. Applied Vegetation Science, 2017, 20, 164-171.	1.9	136
6	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	5.8	110
7	Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences, 2013, 10, 1067-1082.	3.3	109
8	Upward shift of alpine plants increases floristic similarity of mountain summits. Journal of Vegetation Science, 2007, 18, 711-718.	2.2	89
9	A new methodology for organic soils in national greenhouse gas inventories: Data synthesis, derivation and application. Ecological Indicators, 2020, 109, 105838.	6.3	84
10	Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 2021, 212, 103446.	9.1	82
11	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	9.9	79
12	Rewetting does not return drained fen peatlands to their old selves. Nature Communications, 2021, 12, 5693.	12.8	75
13	Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss) Tj ETQq $1\ 1$	0.784314	f rgBT /Over <mark>lo</mark>
14	Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 2015, 204, 94-105.	4.8	67
15	The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen. GCB Bioenergy, 2015, 7, 1092-1106.	5.6	64
16	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	9.5	59
17	Resurvey of historical vegetation plots: a tool for understanding longâ€ŧerm dynamics of plant communities. Applied Vegetation Science, 2017, 20, 161-163.	1.9	48
18	Impact of adjacent land use on coastal wetland sediments. Science of the Total Environment, 2016, 550, 337-348.	8.0	47

#	Article	IF	CITATIONS
19	From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Systems, 2020, 4, 14.	2.6	45
20	Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift. PLoS ONE, 2015, 10, e0140657.	2.5	40
21	Predominance of methanogens over methanotrophs in rewetted fens characterized by high methane emissions. Biogeosciences, 2018, 15, 6519-6536.	3.3	38
22	Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190524.	4.0	35
23	Unraveling the Importance of Polyphenols for Microbial Carbon Mineralization in Rewetted Riparian Peatlands. Frontiers in Environmental Science, 2019, 7, .	3.3	34
24	Commentary: do we have a consistent terminology for species diversity? We are on the way. Oecologia, 2011, 167, 893-902.	2.0	33
25	Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands. Agricultural and Forest Meteorology, 2021, 308-309, 108528.	4.8	33
26	Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management, 2013, 21, 323-337.	1.5	31
27	Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecology and Diversity, 2015, 8, 49-60.	2.4	31
28	Towards objectivity in research evaluation using bibliometric indicators – A protocol for incorporating complexity. Basic and Applied Ecology, 2009, 10, 393-400.	2.7	30
29	Understanding the Coastal Ecocline: Assessing Sea–Land Interactions at Non-tidal, Low-Lying Coasts Through Interdisciplinary Research. Frontiers in Marine Science, 2018, 5, .	2.5	30
30	Impact of climate change on tree-ring growth of Scots pine, common beech and pedunculate oak in northeastern Germany. IForest, 2016 , 9 , $1-11$.	1.4	30
31	Interdisciplinary Geoâ€ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENOâ€NE). Vadose Zone Journal, 2018, 17, 1-25.	2.2	29
32	Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland. Biogeosciences, 2019, 16, 1937-1953.	3.3	29
33	The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190685.	4.0	25
34	Long-Term Rewetting of Three Formerly Drained Peatlands Drives Congruent Compositional Changes in Pro- and Eukaryotic Soil Microbiomes through Environmental Filtering. Microorganisms, 2020, 8, 550.	3.6	25
35	Winter warming pulses affect the development of planted temperate grassland and dwarf-shrub heath communities. Plant Ecology and Diversity, 2011, 4, 13-21.	2.4	24
36	Multisensor data to derive peatland vegetation communities using a fixed-wing unmanned aerial vehicle. International Journal of Remote Sensing, 2019, 40, 9103-9125.	2.9	24

#	Article	IF	Citations
37	Spatial Variability of Annual Estimates of Methane Emissions in a Phragmites Australis (Cav.) Trin. ex Steud. Dominated Restored Coastal Brackish Fen. Wetlands, 2014, 34, 593-602.	1.5	23
38	CO ₂ exchange of a temperate fen during the conversion from moderately rewetting to flooding. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 940-950.	3.0	21
39	Opaque closed chambers underestimate methane fluxes of Phragmites australis (Cav.) Trin. ex Steud. Environmental Monitoring and Assessment, 2014, 186, 2151-2158.	2.7	20
40	Mapping soil CO2 efflux in an old-growth forest using regression kriging with estimated fine root biomass as ancillary data. Forest Ecology and Management, 2012, 263, 101-113.	3.2	19
41	Topsoil removal reduced in-situ methane emissions in a temperate rewetted bog grassland by a hundredfold. Science of the Total Environment, 2020, 721, 137763.	8.0	19
42	Soil respiration after tillage under different fertiliser treatments $\hat{a} \in \text{``implications for modelling and balancing. Soil and Tillage Research, 2015, 150, 30-42.}$	5.6	18
43	Scale-dependent temporal variation in determining the methane balance of a temperate fen. Greenhouse Gas Measurement and Management, 2014, 4, 41-48.	0.6	17
44	Tillage-induced short-term soil organic matter turnover and respiration. Soil, 2016, 2, 475-486.	4.9	17
45	Dynamics of surface elevation and microtopography in different zones of a coastal Phragmites wetland. Ecological Engineering, 2016, 94, 152-163.	3.6	17
46	The climate benefits of topsoil removal and <scp><i>Sphagnum</i></scp> introduction in raised bog restoration. Restoration Ecology, 2022, 30, e13490.	2.9	16
47	Variability of soil carbon stocks in a mixed deciduous forest on hydromorphic soils. Geoderma, 2017, 307, 8-18.	5.1	15
48	Congruent changes in microbial community dynamics and ecosystem methane fluxes following natural drought in two restored fens. Soil Biology and Biochemistry, 2021, 160, 108348.	8.8	15
49	Profitability of Direct Greenhouse Gas Measurements in Carbon Credit Schemes of Peatland Rewetting. Ecological Economics, 2018, 146, 766-771.	5.7	14
50	Taxonomic and functional vegetation changes after shifting management from traditional herding to fenced grazing in temperate grassland communities. Applied Vegetation Science, 2017, 20, 259-270.	1.9	13
51	Potential short-term losses of N ₂ O and N ₂ from high concentrations of biogas digestate in arable soils. Soil, 2017, 3, 161-176.	4.9	13
52	Drought years in peatland rewetting: rapid vegetation succession can maintain the net CO ₂ sink function. Biogeosciences, 2021, 18, 917-935.	3.3	13
53	Spatial Patterns of Biodiversity–Assessing Vegetation Using Hexagonal Grids. Biology and Environment, 2006, 106, 401-411.	0.3	13
54	Introduction of a guideline for measurements of greenhouse gas fluxes from soils using nonâ€steadyâ€state chambers. Journal of Plant Nutrition and Soil Science, 2022, 185, 447-461.	1.9	13

#	Article	IF	CITATIONS
55	Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient from Central to Cold Marginal Stands of a Major Temperate Forest Tree. Ecosystems, 2021, 24, 1545-1560.	3.4	10
56	Meteorological Controls on Water Table Dynamics in Fen Peatlands Depend on Management Regimes. Frontiers in Earth Science, $2021, 9, .$	1.8	10
57	Shortâ€lived peaks of stem methane emissions from mature black alder (<i>Alnus glutinosa</i> (L.)) Tj ETQq1 I	0.784314 1.5	rgBT Overlo
58	Detecting spatial patterns in species composition with multiple plot similarity coefficients and singularity measures. Ecography, 2012, 35, 73-88.	4.5	9
59	Long-term vegetation change in the Western Tien-Shan Mountain pastures, Central Asia, driven by a combination of changing precipitation patterns and grazing pressure. Science of the Total Environment, 2021, 781, 146720.	8.0	9
60	Vegetation changes in the Red Sea Hills: from mist oasis to arid shrub. Plant Ecology and Diversity, 2012, 5, 527-539.	2.4	8
61	Drainage Ditches Contribute Considerably to the CH4 Budget of a Drained and a Rewetted Temperate Fen. Wetlands, $2021,41,1$.	1.5	8
62	Eukaryotic rather than prokaryotic microbiomes change over seasons in rewetted fen peatlands. FEMS Microbiology Ecology, 2021, 97, .	2.7	8
63	How to best address spatial and temporal variability of soil-derived nitrous oxide and methane emissions. Journal of Plant Nutrition and Soil Science, 2018, 181, 7-11.	1.9	7
64	Blue Carbon in Coastal Phragmites Wetlands Along the Southern Baltic Sea. Estuaries and Coasts, 2022, 45, 2274-2282.	2.2	7
65	Spatial variability at different scales and sampling requirements for in situ soil CO2 efflux measurements on an arable soil. Catena, 2015, 131, 46-55.	5.0	6
66	Rewetting prolongs root growing season in minerotrophic peatlands and mitigates negative drought effects. Journal of Applied Ecology, 0, , .	4.0	6
67	Salinity exerted little effect on decomposition of emergent macrophytes in coastal peatlands. Aquatic Botany, 2021, 175, 103446.	1.6	2
68	Spatial Patterns of Phytodiversity - Assessing Vegetation Using (Dis) Similarity Measures. , 2011, , .		1
69	Upward shift of alpine plants increases floristic similarity of mountain summits. Journal of Vegetation Science, 2007, 18, 711.	2.2	1
70	Biogeochemical controls of carbon transformation in a drained coastal peatland of the southern Baltic Sea: An isotope and trace element perspective. , 2021, , .		0