
Maria Cristina Paganini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5386325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc oxide hollow spheres decorated with cerium dioxide. The role of morphology in the photoactivity of semiconducting oxides. Journal of Physics Condensed Matter, 2022, 34, 134001.	0.7	2
2	Photocatalytic reductive and oxidative ability study of pristine ZnO and CeO2-ZnO heterojunction impregnated with Cu2O. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113775.	2.0	6
3	The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review. Chemical Engineering Journal Advances, 2022, 10, 100268.	2.4	29
4	Nitrogen-Doped Zinc Oxide for Photo-Driven Molecular Hydrogen Production. International Journal of Molecular Sciences, 2022, 23, 5222.	1.8	9
5	Natural solar activation of modified zinc oxides with rare earth elements (Ce, Yb) and Fe for the simultaneous disinfection and decontamination of urban wastewater. Chemosphere, 2022, 303, 135017.	4.2	4
6	Red Upconverter Nanocrystals Functionalized with Verteporfin for Photodynamic Therapy Triggered by Upconversion. International Journal of Molecular Sciences, 2022, 23, 6951.	1.8	2
7	Ternary systems based on ZnO/CeO2/Cu2O for the degradation of phenol and carbamazepine. Journal of Alloys and Compounds, 2021, 856, 158167.	2.8	6
8	Photoactive systems based on semiconducting metal oxides. , 2021, , 221-234.		0
9	The "Lab4treat―Outreach Experience: Preparation of Sustainable Magnetic Nanomaterials for Remediation of Model Wastewater. Molecules, 2021, 26, 3361.	1.7	1
10	Cerium-, Europium- and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review. Catalysts, 2021, 11, 1520.	1.6	11
11	The role of Yb doped ZnO in the charge transfer process and stabilization. Journal of Alloys and Compounds, 2020, 816, 152555.	2.8	13
12	Combining the highest degradation efficiency with the lowest environmental impact in zinc oxide based photocatalytic systems. Journal of Cleaner Production, 2020, 252, 119762.	4.6	13
13	Location and activity of VOx species on TiO2 particles for NH3-SCR catalysis. Applied Catalysis B: Environmental, 2020, 278, 119337.	10.8	50
14	Mechanism of visible photon absorption: unveiling of the C ₃ N ₄ –ZnO photoactive interface by means of EPR spectroscopy. Materials Advances, 2020, 1, 2357-2367.	2.6	16
15	Comparison of the Photocatalytic Activity of ZnO/CeO2 and ZnO/Yb2O3 Mixed Systems in the Phenol Removal from Water: A Mechanicistic Approach. Catalysts, 2020, 10, 1222.	1.6	6
16	Photoactivity under visible light of defective ZnO investigated by EPR spectroscopy and photoluminescence. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112531.	2.0	44
17	Nitrogen-doped semiconducting oxides. Implications on photochemical, photocatalytic and electronic properties derived from EPR spectroscopy. Chemical Science, 2020, 11, 6623-6641.	3.7	32
18	Electron magnetic resonance in heterogeneous photocatalysis research. Journal of Physics	0.7	21

Condensed Matter, 2019, 31, 444001.

#	Article	IF	CITATIONS
19	The effect of cobalt doping on the efficiency of semiconductor oxides in the photocatalytic water remediation. Journal of Environmental Chemical Engineering, 2019, 7, 103475.	3.3	32
20	Formation of Reversible Adducts by Adsorption of Oxygen on Ce–ZrO ₂ : An Unusual η ² lonic Superoxide. Journal of Physical Chemistry C, 2019, 123, 27088-27096.	1.5	14
21	An Easy Synthesis for Preparing Bio-Based Hybrid Adsorbent Useful for Fast Adsorption of Polar Pollutants. Nanomaterials, 2019, 9, 731.	1.9	16
22	Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light. Nanomaterials, 2019, 9, 534.	1.9	11
23	Photocatalytic performances of rare earth element-doped zinc oxide toward pollutant abatement in water and wastewater. Applied Catalysis B: Environmental, 2019, 245, 159-166.	10.8	49
24	Different approaches for the solar photocatalytic removal of micro-contaminants from aqueous environment: Titania vs. hybrid magnetic iron oxides. Catalysis Today, 2019, 328, 164-171.	2.2	20
25	Synthesis and characterization of Ce and Er doped ZrO2 nanoparticles as solar light driven photocatalysts. Journal of Alloys and Compounds, 2019, 775, 896-904.	2.8	39
26	Exploring the Interaction of Ammonia with Supported Vanadia Catalysts by Continuous Wave and Pulsed Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 7861-7869.	1.5	7
27	New insight into zinc oxide doped with iron and its exploitation to pollutants abatement. Catalysis Today, 2019, 328, 230-234.	2.2	21
28	ZnO-based materials and enzymes hybrid systems as highly efficient catalysts for recalcitrant pollutants abatement. Chemical Engineering Journal, 2018, 334, 2530-2538.	6.6	46
29	Dependence between Ionic Liquid Structure and Mechanism of Visible-Light-Induced Activity of TiO ₂ Obtained by Ionic-Liquid-Assisted Solvothermal Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 3927-3937.	3.2	21
30	Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment. Journal of Solid State Chemistry, 2018, 264, 42-47.	1.4	76
31	Origin of Visible Light Photoactivity of the CeO ₂ /ZnO Heterojunction. ACS Applied Energy Materials, 2018, 1, 4247-4260.	2.5	60
32	Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst. Journal of Hazardous Materials, 2017, 323, 471-477.	6.5	59
33	Photocatalytic activity of TiO 2 -WO 3 mixed oxides in formic acid oxidation. Catalysis Today, 2017, 287, 176-181.	2.2	33
34	Photoactivity properties of ZnO doped with cerium ions: an EPR study. Journal of Physics Condensed Matter, 2017, 29, 444001.	0.7	23
35	Synthesis, Characterization, and Photocatalytic Tests of N-Doped Zinc Oxide: A New Interesting Photocatalyst. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	30
36	Beyond TiO ₂ : Cerium-Doped Zinc Oxide as a New Photocatalyst for the Photodegradation of Persistent Pollutants ChemistrySelect, 2016, 1, 3377-3383.	0.7	20

#	Article	IF	CITATIONS
37	Cerium doped zirconium dioxide as a potential new photocatalytic material. The role of the properties of the material. Applied Catalysis A: General, 2015, 504, 338-343.	2.2	35
38	EPR study of the relationship between ultra high molecular weight polyethylene structure and radicals formed during irradiation with high energy sources. Magnetic Resonance in Chemistry, 2015, 53, 194-199.	1.1	1
39	Point Defects in Electron Paramagnetic Resonance. Springer Series in Surface Sciences, 2015, , 303-326.	0.3	3
40	The interaction of oxygen with the surface of CeO ₂ –TiO ₂ mixed systems: an example of fully reversible surface-to-molecule electron transfer. Physical Chemistry Chemical Physics, 2014, 16, 21438-21445.	1.3	11
41	Nature of Reduced States in Titanium Dioxide as Monitored by Electron Paramagnetic Resonance. II: Rutile and Brookite Cases. Journal of Physical Chemistry C, 2014, 118, 22141-22148.	1.5	60
42	Structural and spectroscopic characterization of CeO2–TiO2 mixed oxides. Journal of Materials Chemistry A, 2013, 1, 10918.	5.2	51
43	Structural and spectroscopic properties of high temperature prepared ZrO2–TiO2 mixed oxides. Journal of Solid State Chemistry, 2013, 201, 222-228.	1.4	27
44	Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 9435.	1.3	188
45	Paramagnetic Defects in Polycrystalline Zirconia: An EPR and DFT Study. Chemistry of Materials, 2013, 25, 2243-2253.	3.2	148
46	Mechanism of the Photoactivity under Visible Light of N-Doped Titanium Dioxide. Charge Carriers Migration in Irradiated N-TiO ₂ Investigated by Electron Paramagnetic Resonance Journal of Physical Chemistry C, 2012, 116, 20887-20894.	1.5	155
47	HYSCORE and Davies ENDOR study of irradiated ultra high molecular weight polyethylene. Magnetic Resonance in Chemistry, 2012, 50, 615-619.	1.1	6
48	On the Nature of Reduced States in Titanium Dioxide As Monitored by Electron Paramagnetic Resonance. I: The Anatase Case. Journal of Physical Chemistry C, 2011, 115, 25413-25421.	1.5	147
49	EPR study of electron trapping on partially hydroxylated alkali-earth oxides occurring during SO2 disproportionation. Journal of Molecular Catalysis A, 2011, 349, 100-104.	4.8	1
50	Post-irradiation oxidation of different polyethylenes. Polymer Degradation and Stability, 2011, 96, 624-629.	2.7	47
51	Electron beam radiation effects on UHMWPE: an EPR study. Magnetic Resonance in Chemistry, 2011, 49, 562-569.	1.1	14
52	Probing the Local Environment of Ti ³⁺ lons in TiO ₂ (Rutile) by ¹⁷ O HYSCORE. Angewandte Chemie - International Edition, 2011, 50, 8038-8040.	7.2	57
53	EPR of Charge Carriers Stabilized at the Surface of Metal Oxides. Applied Magnetic Resonance, 2010, 37, 605-618.	0.6	8
54	SO2 reactivity on the MgO and CaO surfaces: A CW-EPR study of oxo-sulphur radical anions. Journal of Molecular Catalysis A, 2010, 322, 39-44.	4.8	14

#	Article	IF	CITATIONS
55	Decreasing the oxidative potential of TiO2 nanoparticles through modification of the surface with carbon: a new strategy for the production of safe UV filters. Chemical Communications, 2010, 46, 8478.	2.2	42
56	Quantitative Investigation of MgO BrÃ,nsted Basicity: DFT, IR, and Calorimetry Study of Methanol Adsorption. Journal of Physical Chemistry C, 2010, 114, 3008-3016.	1.5	45
57	Nitrogen-doped and nitrogen–fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 93-97.	2.0	61
58	Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile). Journal of Solid State Chemistry, 2009, 182, 160-164.	1.4	71
59	Structural and spectroscopic characterization of Mo1â^'xWxO3â^'Î′ mixed oxides. Journal of Solid State Chemistry, 2009, 182, 3342-3352.	1.4	21
60	N-doped TiO2: Theory and experiment. Chemical Physics, 2007, 339, 44-56.	0.9	864
61	Lifetime of alkyl macroradicals in irradiated ultra-high molecular weight polyethylene. Polymer Degradation and Stability, 2007, 92, 1498-1503.	2.7	30
62	Trapped molecular species in N-doped TiO2. Research on Chemical Intermediates, 2007, 33, 739-747.	1.3	24
63	EPR Study of the Surface Basicity of Calcium Oxide. 3. Surface Reactivity and Nonstoichiometry. Journal of Physical Chemistry B, 2006, 110, 11918-11923.	1.2	22
64	Excess Electrons Stabilized on Ionic Oxide Surfacesâ€. Accounts of Chemical Research, 2006, 39, 861-867.	7.6	144
65	Reduction and fragmentation of CS2 at the surface of electron-rich MgO: an EPR study. Research on Chemical Intermediates, 2006, 32, 777-786.	1.3	4
66	Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light. Journal of the American Chemical Society, 2006, 128, 15666-15671.	6.6	818
67	Electron Traps on Oxide Surfaces: (H+)(eâ^') Pairs Stabilized on the Surface of 170 Enriched CaO. ChemPhysChem, 2006, 7, 728-734.	1.0	24
68	Preparation and spectroscopic characterisation of nitrogen doped titanium dioxide. Studies in Surface Science and Catalysis, 2005, 155, 375-380.	1.5	4
69	The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chemical Communications, 2005, , 498.	2.2	181
70	Single Electron Traps at the Surface of Polycrystalline MgO:Â Assignment of the Main Trapping Sites. Journal of Physical Chemistry B, 2005, 109, 7314-7322.	1.2	74
71	Radical formation induced by \hat{I}^3 radiation in poly(vinyl chloride) powder. Nuclear Instruments & Methods in Physics Research B, 2004, 215, 471-478.	0.6	19
72	Bidimensional Solvation and Delocalisation of Electrons at the Surface of an Insulating Oxide: The Role of Surface Hydroxyl Groups on MgO. ChemPhysChem, 2004, 5, 1897-1900.	1.0	12

#	Article	IF	CITATIONS
73	First Evidence of a Single-Ion Electron Trap at the Surface of an Ionic Oxide. Angewandte Chemie, 2003, 115, 1801-1803.	1.6	7
74	First Evidence of a Single-Ion Electron Trap at the Surface of an Ionic Oxide. Angewandte Chemie - International Edition, 2003, 42, 1759-1761.	7.2	69
75	Coadsorption of NO and H2 at the surface of MgO monitored by EPR spectroscopy. Towards a site specific discrimination of polycrystalline oxide surfaces. Surface Science, 2003, 527, 80-88.	0.8	11
76	Oâ^ radical anions on polycrystalline MgO. Surface Science, 2002, 521, 104-116.	0.8	30
77	Heterogeneity of surface colour centres on alkaline earth metal oxides as revealed through EPR/ENDOR spectroscopy. Magnetic Resonance in Chemistry, 2002, 40, 381-386.	1.1	11
78	Oâ ^{~,} radical ions on MgO as a tool to unravel structure and location of ionic vacancies at the surface of oxides: a coupled experimental and theoretical investigation. Surface Science, 2001, 494, 95-110.	0.8	44
79	Partial Ionization of Cesium Atoms at Point Defects over Polycrystalline Magnesium Oxide. Journal of Physical Chemistry B, 2001, 105, 10457-10460.	1.2	12
80	Generation of superoxide ions at oxide surfaces. Topics in Catalysis, 1999, 8, 189-198.	1.3	312
81	Surface Color Centers on Calcium Oxide:Â An Electron Paramagnetic Resonance Investigation. Langmuir, 1997, 13, 5306-5315.	1.6	28
82	An EPR Study of the Surface Chemistry of the V2O5–WO3/TiO2Catalyst: Redox Behaviour and State of V(IV). Journal of Catalysis, 1997, 166, 195-205.	3.1	104
83	Continuous wave electron paramagnetic resonance spectroscopy in the investigation of the surface properties and chemical reactivity of an ionic oxide (MgO). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 115, 157-170.	2.3	18