Alain Charcosset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/538583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient ReML inference in variance component mixed models using a Min-Max algorithm. PLoS Computational Biology, 2022, 18, e1009659.	1.5	13
2	Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts. Genetics, 2022, 220, .	1.2	5
3	Building a Calibration Set for Genomic Prediction, Characteristics to Be Considered, and Optimization Approaches. Methods in Molecular Biology, 2022, 2467, 77-112.	0.4	8
4	Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions. Nature Communications, 2022, 13, .	5.8	19
5	Genomic prediction of hybrid crops allows disentangling dominance and epistasis. Genetics, 2021, 218, .	1.2	20
6	Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. Theoretical and Applied Genetics, 2020, 133, 201-215.	1.8	23
7	A systems genetics approach reveals environment-dependent associations between SNPs, protein coexpression, and drought-related traits in maize. Genome Research, 2020, 30, 1593-1604.	2.4	10
8	Accounting for Group-Specific Allele Effects and Admixture in Genomic Predictions: Theory and Experimental Evaluation in Maize. Genetics, 2020, 216, 27-41.	1.2	15
9	Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics, 2020, 21, 349.	1.2	38
10	Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs. Theoretical and Applied Genetics, 2020, 133, 1995-2010.	1.8	20
11	Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering. PLoS Genetics, 2020, 16, e1008241.	1.5	44
12	Deciphering the Genetic Diversity of Landraces With High-Throughput SNP Genotyping of DNA Bulks: Methodology and Application to the Maize 50k Array. Frontiers in Plant Science, 2020, 11, 568699.	1.7	9
13	Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biology, 2019, 19, 318.	1.6	45
14	Assessment of breeding programs sustainability: application of phenotypic and genomic indicators to a North European grain maize program. Theoretical and Applied Genetics, 2019, 132, 1321-1334.	1.8	26
15	Genomic prediction of maize yield across European environmental conditions. Nature Genetics, 2019, 51, 952-956.	9.4	157
16	Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression. G3: Genes, Genomes, Genetics, 2019, 9, 1469-1479.	0.8	45
17	Quantitative trait loci mapping in hybrids between Dent and Flint maize multiparental populations reveals group-specific QTL for silage quality traits with variable pleiotropic effects on yield. Theoretical and Applied Genetics, 2019, 132, 1523-1542.	1.8	12
18	Improving Short- and Long-Term Genetic Gain by Accounting for Within-Family Variance in Optimal Cross-Selection. Frontiers in Genetics, 2019, 10, 1006.	1.1	40

ALAIN CHARCOSSET

#	Article	IF	CITATIONS
19	Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel. Theoretical and Applied Genetics, 2019, 132, 81-96.	1.8	42
20	Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants. BMC Genomics, 2018, 19, 119.	1.2	27
21	Estimation of the Relatedness Coefficients from Biallelic Markers, Application in Plant Mating Designs. Biometrics, 2017, 73, 885-894.	0.8	1
22	General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theoretical and Applied Genetics, 2017, 130, 403-417.	1.8	43
23	Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (<i>Zea mays</i> L.) Heterotic Groups. Genetics, 2017, 207, 1167-1180.	1.2	53
24	Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. Theoretical and Applied Genetics, 2017, 130, 2231-2247.	1.8	49
25	Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theoretical and Applied Genetics, 2017, 130, 2165-2189.	1.8	39
26	Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genetics, 2017, 13, e1006666.	1.5	73
27	Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biology, 2016, 16, 127.	1.6	73
28	Genome-wide analysis of yield in Europe: allelic effects as functions of drought and heat scenarios. Plant Physiology, 2016, 172, pp.00621.2016.	2.3	140
29	Study on Essential Derivation in Maize: III. Selection and Evaluation of a Panel of Single Nucleotide Polymorphism Loci for Use in European and North American Germplasm. Crop Science, 2015, 55, 1170-1180.	0.8	33
30	Linkage Disequilibrium with Linkage Analysis of Multiline Crosses Reveals Different Multiallelic QTL for Hybrid Performance in the Flint and Dent Heterotic Groups of Maize. Genetics, 2014, 198, 1717-1734.	1.2	89
31	Recovering Power in Association Mapping Panels with Variable Levels of Linkage Disequilibrium. Genetics, 2014, 197, 375-387.	1.2	89
32	Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production. Theoretical and Applied Genetics, 2014, 127, 2313-2331.	1.8	41
33	Usefulness of Multiparental Populations of Maize (<i>Zea mays</i> L.) for Genome-Based Prediction. Genetics, 2014, 198, 3-16.	1.2	114
34	Out of America: tracing the genetic footprints of the global diffusion of maize. Theoretical and Applied Genetics, 2013, 126, 2671-2682.	1.8	72
35	Intraspecific variation of recombination rate in maize. Genome Biology, 2013, 14, R103.	13.9	176
36	Adaptation of Maize to Temperate Climates: Mid-Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with a Major Contribution of the Vgt2 (ZCN8) Locus. PLoS ONE, 2013, 8, e71377.	1.1	83

ALAIN CHARCOSSET

#	Article	IF	CITATIONS
37	Flowering Time in Maize: Linkage and Epistasis at a Major Effect Locus. Genetics, 2012, 190, 1547-1562.	1.2	75
38	The Genetic Basis of Heterosis: Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of Apparent Overdominance Among Traits of Agronomical Interest in Maize (<i>Zea mays</i> L.). Genetics, 2012, 190, 795-811.	1.2	146
39	Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time. Theoretical and Applied Genetics, 2012, 125, 731-747.	1.8	13
40	Maximizing the Reliability of Genomic Selection by Optimizing the Calibration Set of Reference Individuals: Comparison of Methods in Two Diverse Groups of Maize Inbreds (<i>Zea mays</i> L.). Genetics, 2012, 192, 715-728.	1.2	258
41	A European perspective on maize history. Comptes Rendus - Biologies, 2011, 334, 221-228.	0.1	111
42	A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PLoS ONE, 2011, 6, e28334.	1.1	523
43	Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize. Euphytica, 2008, 161, 71-84.	0.6	24
44	Key Impact of <i>Vgt1</i> on Flowering Time Adaptation in Maize: Evidence From Association Mapping and Ecogeographical Information. Genetics, 2008, 178, 2433-2437.	1.2	129
45	Detection of marker–QTL associations by studying change in marker frequencies with selection. Theoretical and Applied Genetics, 2007, 114, 669-681.	1.8	43
46	Number and Fitness of Selected Individuals in Marker-Assisted and Phenotypic Recurrent Selection. Crop Science, 2006, 46, 1972-1980.	0.8	38
47	Maize Adaptation to Temperate Climate: Relationship Between Population Structure and Polymorphism in the Dwarf8 Gene. Genetics, 2006, 172, 2449-2463.	1.2	204
48	Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theoretical and Applied Genetics, 2005, 112, 1-11.	1.8	35
49	Linkage Mapping of 1454 New Maize Candidate Gene Loci. Genetics, 2005, 170, 1957-1966.	1.2	74
50	Genetic Architecture of Flowering Time in Maize As Inferred From Quantitative Trait Loci Meta-analysis and Synteny Conservation With the Rice Genome. Genetics, 2004, 168, 2169-2185.	1.2	353
51	Maize introduction into Europe: the history reviewed in the light of molecular data. Theoretical and Applied Genetics, 2003, 106, 895-903.	1.8	162
52	RFLP diversity and relationships among traditional European maize populations. Theoretical and Applied Genetics, 2002, 105, 91-99.	1.8	46
53	Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation. Heredity, 2001, 86, 574-587.	1.2	74
54	Evaluation of a DNA pooled-sampling strategy for estimating the RFLP diversity of maize populations. Plant Molecular Biology Reporter, 1999, 17, 123-138.	1.0	39

ALAIN CHARCOSSET

#	Article	IF	CITATIONS
55	Relationships among maize inbred lines and populations from European and North-American origins as estimated using RFLP markers. Theoretical and Applied Genetics, 1999, 99, 473-480.	1.8	41
56	Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theoretical and Applied Genetics, 1998, 96, 577-587.	1.8	76
57	Relationship between phenotypic and marker distances: theoretical and experimental investigations. Heredity, 1997, 79, 477-483.	1.2	61
58	Marker-Assisted Introgression of Quantitative Trait Loci. Genetics, 1997, 147, 1469-1485.	1.2	268
59	The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theoretical and Applied Genetics, 1994, 89-89, 336-343.	1.8	75
60	Relationship between heterosis and heterozygosity at marker loci: a theoretical computation. Theoretical and Applied Genetics, 1991, 81, 571-575.	1.8	94