
Linn Berglund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385814/publications.pdf Version: 2024-02-01

LINN REPOLLIND

#	Article	IF	CITATIONS
1	Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Industrial Crops and Products, 2016, 92, 84-92.	5.2	100
2	Membranes Based on Cellulose Nanofibers and Activated Carbon for Removal of Escherichia coli Bacteria from Water. Polymers, 2017, 9, 335.	4.5	65
3	Potential of municipal solid waste paper as raw material for production of cellulose nanofibres. Waste Management, 2018, 80, 319-326.	7.4	57
4	Effect of xylanase pretreatment of rice strawÂunbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose, 2018, 25, 2939-2953.	4.9	47
5	Use of Bacterial Cellulose and Crosslinked Cellulose Nanofibers Membranes for Removal of Oil from Oil-in-Water Emulsions. Polymers, 2017, 9, 388.	4.5	43
6	Dispersion and reinforcing effect of carrot nanofibers on biopolyurethane foams. Materials and Design, 2016, 110, 526-531.	7.0	39
7	Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Scientific Reports, 2020, 10, 11278.	3.3	37
8	Seaweed-Derived Alginate–Cellulose Nanofiber Aerogel for Insulation Applications. ACS Applied Materials & Interfaces, 2021, 13, 34899-34909.	8.0	37
9	Promoted hydrogel formation of lignin-containing arabinoxylan aerogel using cellulose nanofibers as a functional biomaterial. RSC Advances, 2018, 8, 38219-38228.	3.6	34
10	Enhanced alignment and mechanical properties through the use of hydroxyethyl cellulose in solvent-free native cellulose spun filaments. Composites Science and Technology, 2017, 150, 79-86.	7.8	32
11	Nanocomposite Film Based on Cellulose Acetate and Lignin-Rich Rice Straw Nanofibers. Materials, 2019, 12, 595.	2.9	31
12	Biorefinery Approach for Aerogels. Polymers, 2020, 12, 2779.	4.5	31
13	Switchable ionic liquids enable efficient nanofibrillation of wood pulp. Cellulose, 2017, 24, 3265-3279.	4.9	29
14	Properties of cellulose nanofibre networks prepared from never-dried and dried paper mill sludge. Journal of Cleaner Production, 2018, 197, 765-771.	9.3	25
15	Fungal textile alternatives from bread waste with leather-like properties. Resources, Conservation and Recycling, 2022, 179, 106041.	10.8	23
16	Toward eco-efficient production of natural nanofibers from industrial residue: Eco-design and quality assessment. Journal of Cleaner Production, 2020, 255, 120274.	9.3	22
17	Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities. Biomacromolecules, 2021, 22, 3800-3809.	5.4	22
18	Effect of Unbleached Rice Straw Cellulose Nanofibers on the Properties of Polysulfone Membranes. Polymers, 2019, 11, 938.	4.5	19

LINN BERGLUND

#	Article	IF	CITATIONS
19	Metallo-Terpyridine-Modified Cellulose Nanofiber Membranes for Papermaking Wastewater Purification. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 439-447.	3.7	18
20	Correlating rheology and printing performance of fiber-reinforced bioinks to assess predictive modelling for biofabrication. Journal of Materials Research, 2021, 36, 3821-3832.	2.6	13
21	Effect of pectin extraction method on properties of cellulose nanofibers isolated from sugar beet pulp. Cellulose, 2021, 28, 10905-10920.	4.9	13
22	Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces. Surface Engineering, 2018, 34, 825-831.	2.2	12
23	Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications. Biomacromolecules, 2021, 22, 3202-3215.	5.4	12
24	Modification of cellulose nanofibre surfaces by He/NH3 plasma at atmospheric pressure. Cellulose, 2019, 26, 7185-7194.	4.9	11
25	Utilizing the Natural Composition of Brown Seaweed for the Preparation of Hybrid Ink for 3D Printing of Hydrogels. ACS Applied Bio Materials, 2020, 3, 6510-6520.	4.6	10
26	Functional Nanocomposite Films of Poly(Lactic Acid) with Well-Dispersed Chitin Nanocrystals Achieved Using a Dispersing Agent and Liquid-Assisted Extrusion Process. Molecules, 2021, 26, 4557.	3.8	9
27	The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall. Nanomaterials, 2021, 11, 1179.	4.1	5