Douglas J Begg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385703/publications.pdf

Version: 2024-02-01

44 1,286 20 35
papers citations h-index g-index

45 45 45 1291 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Veterinary Immunology and Immunopathology, 2012, 148, 29-47.	0.5	310
2	High-Throughput Direct Fecal PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Sheep and Cattle. Journal of Clinical Microbiology, 2014, 52, 745-757.	1.8	76
3	Experimental animal infection models for Johne's disease, an infectious enteropathy caused by Mycobacterium avium subsp. paratuberculosis. Veterinary Journal, 2008, 176, 129-145.	0.6	69
4	Experimental infection model for Johne's disease using a lyophilised, pure culture, seedstock of Mycobacterium avium subspecies paratuberculosis. Veterinary Microbiology, 2010, 141, 301-311.	0.8	57
5	Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium. Journal of Clinical Microbiology, 2013, 51, 3993-4000.	1.8	52
6	Toll-like receptor genes are differentially expressed at the sites of infection during the progression of Johne's disease in outbred sheep. Veterinary Immunology and Immunopathology, 2008, 124, 132-151.	0.5	47
7	Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: A review. Comparative Immunology, Microbiology and Infectious Diseases, 2011, 34, 197-208.	0.7	45
8	Macrophage polarization in cattle experimentally exposed to <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> . Pathogens and Disease, 2015, 73, ftv085.	0.8	41
9	Expression of genes associated with the antigen presentation and processing pathway are consistently regulated in early Mycobacterium avium subsp. paratuberculosis infection. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 151-162.	0.7	40
10	Can early host responses to mycobacterial infection predict eventual disease outcomes?. Preventive Veterinary Medicine, 2013, 112, 203-212.	0.7	37
11	The early lymphocyte proliferation response in sheep exposed to Mycobacterium avium subsp. paratuberculosis compared to infection status. Immunobiology, 2010, 215, 12-25.	0.8	32
12	Indoleamine 2,3-Dioxygenase, Tryptophan Catabolism, and Mycobacterium avium subsp. paratuberculosis: a Model for Chronic Mycobacterial Infections. Infection and Immunity, 2011, 79, 3821-3832.	1.0	32
13	The interleukin 10 response in ovine Johne's disease. Veterinary Immunology and Immunopathology, 2011, 139, 10-16.	0.5	29
14	<i>In Silico</i> Identification of Epitopes in Mycobacterium avium subsp. <i>paratuberculosis</i> Proteins That Were Upregulated under Stress Conditions. Vaccine Journal, 2012, 19, 855-864.	3.2	27
15	Environmental Survival of Mycobacterium avium subsp. paratuberculosis in Different Climatic Zones of Eastern Australia. Applied and Environmental Microbiology, 2014, 80, 2337-2342.	1.4	27
16	Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle. Veterinary Immunology and Immunopathology, 2014, 160, 147-157.	0.5	24
17	Toll-like receptor (TLR)6 and TLR1 differentiation in gene expression studies of Johne's disease. Veterinary Immunology and Immunopathology, 2010, 137, 142-148.	0.5	23
18	Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR. Journal of Clinical Microbiology, 2015, 53, 1121-1128.	1.8	22

#	Article	IF	Citations
19	Immunopathological changes and apparent recovery from infection revealed in cattle in an experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium subspecies paratuberculosis. Veterinary Microbiology, 2018, 219, 53-62.	0.8	22
20	Enzyme-Linked Immunospot: An Alternative Method for the Detection of Interferon Gamma in Johne's Disease. Journal of Veterinary Diagnostic Investigation, 2009, 21, 187-196.	0.5	21
21	Culture of Mycobacterium avium subspecies paratuberculosis (MAP) from blood and extra-intestinal tissues in experimentally infected sheep. Veterinary Microbiology, 2011, 147, 127-132.	0.8	21
22	Gene expression profiles during subclinical Mycobacterium avium subspecies paratuberculosis infection in sheep can predict disease outcome. Scientific Reports, 2019, 9, 8245.	1.6	21
23	A Rapid Method for Quantifying Viable Mycobacterium avium subsp. paratuberculosis in Cellular Infection Assays. Applied and Environmental Microbiology, 2016, 82, 5553-5562.	1.4	20
24	A longitudinal study to evaluate the diagnostic potential of a direct faecal quantitative PCR test for Johne's disease in sheep. Veterinary Microbiology, 2011, 148, 35-44.	0.8	19
25	CD4+ T-cells, $\hat{l}^3\hat{l}^2$ T-cells and B-cells are associated with lack of vaccine protection in Mycobacterium avium subspecies paratuberculosis infection. Vaccine, 2015, 33, 149-155.	1.7	19
26	Defining resilience to mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. Veterinary Immunology and Immunopathology, 2018, 195, 56-64.	0.5	19
27	The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Veterinary Research, 2019, 15, 223.	0.7	18
28	Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle. BMC Veterinary Research, 2016, 12, 115.	0.7	14
29	In silico screened Mycobacterium avium subsp. paratuberculosis (MAP) recombinant proteins upregulated under stress conditions are immunogenic in sheep. Veterinary Immunology and Immunopathology, 2012, 149, 186-196.	0.5	12
30	Optimisation of culture of Mycobacterium avium subspecies paratuberculosis from blood samples. Journal of Microbiological Methods, 2010, 80, 93-99.	0.7	11
31	Enhancement of the interferon gamma assay to detect paratuberculosis using interleukin-7 and interleukin-12 potentiation. Veterinary Immunology and Immunopathology, 2012, 149, 28-37.	0.5	11
32	Cellular and humoral immune responses in sheep vaccinated with candidate antigens MAP2698c and MAP3567 from Mycobacterium avium subspecies paratuberculosis. Frontiers in Cellular and Infection Microbiology, 2014, 4, 93.	1.8	10
33	Antigenicity of Recombinant Maltose Binding Protein-Mycobacterium avium subsp. paratuberculosis Fusion Proteins with and without Factor Xa Cleaving. Vaccine Journal, 2013, 20, 1817-1826.	3.2	8
34	Lymphoproliferative and Gamma Interferon Responses to Stress-Regulated Mycobacterium avium subsp. paratuberculosis Recombinant Proteins. Vaccine Journal, 2014, 21, 831-837.	3.2	8
35	Optimization of a Whole Blood Gamma Interferon Assay for the Detection of Sheep Infected with <i>Mycobacterium Avium (i) Subspecies <i>Paratuberculosis (i). Journal of Veterinary Diagnostic Investigation, 2010, 22, 210-217.</i></i>	0.5	7
36	Tissue localisation of Mycobacterium avium subspecies paratuberculosis following artificially induced intracellular and naked bacteraemia. Veterinary Microbiology, 2013, 162, 112-118.	0.8	5

#	Article	IF	CITATIONS
37	Integrated vaccine screening system: using cellular functional capacity in vitro to assess genuine vaccine protectiveness in ruminants. Pathogens and Disease, 2018, 76, .	0.8	5
38	Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Frontiers in Veterinary Science, 2021, 8, 637841.	0.9	5
39	Normal levels of immunocompetence in possums (Trichosurus vulpecula) exposed to different laboratory housing conditions post capture. Immunology and Cell Biology, 2004, 82, 253-256.	1.0	4
40	Immunoreactivity of protein tyrosine phosphatase A (PtpA) in sera from sheep infected with Mycobacterium avium subspecies paratuberculosis. Veterinary Immunology and Immunopathology, 2014, 160, 129-132.	0.5	4
41	A national serosurvey to determine the prevalence of paratuberculosis in cattle in Bhutan following detection of clinical cases. Veterinary Medicine and Science, 2018, 4, 288-295.	0.6	4
42	Experimental infection of New Zealand Merino sheep with a suspension of Mycobacterium avium subspecies paratuberculosis (Map) strain Telford: Kinetics of the immune response, histopathology and Map culture. Veterinary Microbiology, 2016, 195, 136-143.	0.8	3
43	Apoptosis of lymph node and peripheral blood cells in ovine Johne's disease. Veterinary Immunology and Immunopathology, 2013, 156, 82-90.	0.5	2
44	Antigenicity in sheep of synthetic peptides derived from stress-regulated Mycobacterium avium subsp. paratuberculosis proteins and comparison with recombinant protein and complex native antigens. Veterinary Immunology and Immunopathology, 2014, 158, 46-52.	0.5	2