
Samsudeen Olajide Kasim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dry Reforming of Methane with Ni Supported on Mechanically Mixed Yttria-Zirconia Support. Catalysis Letters, 2022, 152, 3632-3641.	1.4	6
2	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	1.8	33
3	In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental, 2021, 280, 119445.	10.8	104
4	Role of Mixed Oxides in Hydrogen Production through the Dry Reforming of Methane over Nickel Catalysts Supported on Modified Î ³ -Al2O3. Processes, 2021, 9, 157.	1.3	22
5	Ce promoted lanthana-zirconia supported Ni catalyst system: A ternary redox system for hydrogen production. Molecular Catalysis, 2021, 504, 111498.	1.0	22
6	Hydrogen Yield from CO2 Reforming of Methane: Impact of La2O3 Doping on Supported Ni Catalysts. Energies, 2021, 14, 2412.	1.6	10
7	Optimizing acido-basic profile of support in Ni supported La2O3+Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 14225-14235.	3.8	39
8	Optimizing yttria-zirconia proportions in Ni supported catalyst system for H2 production through dry reforming of methane. Molecular Catalysis, 2021, 510, 111676.	1.0	20
9	Ceria promoted phosphateâ€zirconia supported Ni catalyst for hydrogen rich syngas production through dry reforming of methane. International Journal of Energy Research, 2021, 45, 19289-19302.	2.2	20
10	Impact of ceria over WO3–ZrO2 supported Ni catalyst towards hydrogen production through dry reforming of methane. International Journal of Hydrogen Energy, 2021, 46, 25015-25028.	3.8	44
11	Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 2021, 11, 1233.	1.6	8
12	The effect of modifier identity on the performance of Ni-based catalyst supported on Î ³ -Al2O3 in dry reforming of methane. Catalysis Today, 2020, 348, 236-242.	2.2	46
13	H2 Production from Catalytic Methane Decomposition Using Fe/x-ZrO2 and Fe-Ni/(x-ZrO2) (x = 0, La2O3,) Tj ET	Qq110.78	34314 rgBT /(17
14	Catalytic Performance of Lanthanum Promoted Ni/ZrO2 for Carbon Dioxide Reforming of Methane. Processes, 2020, 8, 1502.	1.3	20
15	Impact of Ce-Loading on Ni-catalyst supported over La2O3+ZrO2 in methane reforming with CO2. International Journal of Hydrogen Energy, 2020, 45, 33343-33351.	3.8	25
16	Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Scientific Reports, 2020, 10, 13861.	1.6	42
17	Study of Partial Oxidation of Methane by Ni/Al2O3 Catalyst: Effect of Support Oxides of Mg, Mo, Ti and Y as Promoters. Molecules, 2020, 25, 5029.	1.7	5
18	Methane Decomposition Over ZrO2-Supported Fe and Fe–Ni Catalysts—Effects of Doping La2O3 and WO3. Frontiers in Chemistry, 2020, 8, 317.	1.8	13

#	Article	IF	CITATIONS
19	Dry Reforming of Methane Using Ce-modified Ni Supported on 8%PO4 + ZrO2 Catalysts. Catalysts, 2020, 10, 242.	1.6	21
20	Methane decomposition over strontium promoted iron catalyst: effect of different ratio of Al/Si support on hydrogen yield. Chemical Engineering Communications, 2020, 207, 1148-1156.	1.5	4
21	Hydrogen Production by Partial Oxidation Reforming of Methane over Ni Catalysts Supported on High and Low Surface Area Alumina and Zirconia. Processes, 2020, 8, 499.	1.3	26
22	Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability. Renewable Energy, 2020, 155, 969-978.	4.3	36
23	Effect of Pressure on Na0.5La0.5Ni0.3Al0.7O2.5 Perovskite Catalyst for Dry Reforming of CH4. Catalysts, 2020, 10, 379.	1.6	5
24	Catalytic Performance of Metal Oxides Promoted Nickel Catalysts Supported on Mesoporous γ-Alumina in Dry Reforming of Methane. Processes, 2020, 8, 522.	1.3	18
25	Enhanced coke suppression by using phosphate-zirconia supported nickel catalysts under dry methane reforming conditions. International Journal of Hydrogen Energy, 2019, 44, 27784-27794.	3.8	32
26	Catalytic Behaviour of Ce-Doped Ni Systems Supported on Stabilized Zirconia under Dry Reforming Conditions. Catalysts, 2019, 9, 473.	1.6	24
27	Influence of Nature Support on Methane and CO2 Conversion in a Dry Reforming Reaction over Nickel-Supported Catalysts. Materials, 2019, 12, 1777.	1.3	23
28	Nanosized Ni/SBA-15 Catalysts for CO2 Reforming of CH4. Applied Sciences (Switzerland), 2019, 9, 1926.	1.3	14
29	Kaolin-Supported Ni Catalysts for Dry Methane Reforming: Effect of Cs and Mixed K–Na Promoters. Journal of Chemical Engineering of Japan, 2019, 52, 232-238.	0.3	4
30	Combined Magnesia, Ceria and Nickel catalyst supported over Î ³ -Alumina Doped with Titania for Dry Reforming of Methane. Catalysts, 2019, 9, 188.	1.6	16
31	Iron catalyst for decomposition of methane: Influence of Al/Si ratio support. Egyptian Journal of Petroleum, 2018, 27, 1221-1225.	1.2	14
32	Influence of promoted 5%Ni/MCM-41 catalysts on hydrogen yield in CO ₂ reforming of CH ₄ . International Journal of Energy Research, 2018, 42, 4120-4130.	2.2	21