
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385105/publications.pdf Version: 2024-02-01

DETED RALEE

#	Article	IF	CITATIONS
1	Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. Journal of Biological Rhythms, 2022, 37, 124-129.	1.4	42
2	Inflammatory Gene Expression Associates with Hepatitis B Virus cccDNA- but Not Integrant-Derived Transcripts in HBeAg Negative Disease. Viruses, 2022, 14, 1070.	1.5	8
3	The <scp>CCCTC</scp> â€binding factor <scp>CTCF</scp> represses hepatitis B virus enhancer I and regulates viral transcription. Cellular Microbiology, 2021, 23, e13274.	1.1	17
4	A PCR assay to quantify patterns of HBV transcription. Journal of General Virology, 2021, 102, .	1.3	10
5	Circadian control of hepatitis B virus replication. Nature Communications, 2021, 12, 1658.	5.8	28
6	Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports, 2021, 35, 109020.	2.9	64
7	Hypoxia inducible factors regulate hepatitis B virus replication by activating the basal core promoter. Journal of Hepatology, 2021, 75, 64-73.	1.8	31
8	Hypoxic microenvironment shapes HIV-1 replication and latency. Communications Biology, 2020, 3, 376.	2.0	22
9	Pharmacological activation of the circadian component REV-ERB inhibits HIV-1 replication. Scientific Reports, 2020, 10, 13271.	1.6	33
10	Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis. Viruses, 2020, 12, 1213.	1.5	18
11	The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nature Communications, 2019, 10, 377.	5.8	71
12	Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway. Scientific Reports, 2019, 9, 7903.	1.6	16
13	Hepatitis C virus infection is associated with hepatic and adipose tissue insulin resistance that improves after viral cure. Clinical Endocrinology, 2019, 90, 440-448.	1.2	16
14	A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Science Alliance, 2019, 2, e201900355.	1.3	18
15	Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Research, 2018, 3, 96.	0.9	9
16	Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Research, 2018, 3, 96.	0.9	5
17	Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. Journal of Hepatology, 2017, 66, 919-929.	1.8	60
18	High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease. Journal of Hepatology, 2017, 66, 28-38.	1.8	28

#	Article	IF	CITATIONS
19	A new panel of epitope mapped monoclonal antibodies recognising the prototypical tetraspanin CD81. Wellcome Open Research, 2017, 2, 82.	0.9	16
20	Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transplantation, 2016, 22, 287-297.	1.3	30
21	Hepatitis C virus infection of cholangiocarcinoma cell lines. Journal of General Virology, 2015, 96, 1380-1388.	1.3	8
22	Permissivity of primary hepatocytes and hepatoma cell lines to support hepatitis C virus infection. Journal of General Virology, 2015, 96, 1369-1373.	1.3	2
23	Combined Adenovirus Vector and Hepatitis C Virus Envelope Protein Prime-Boost Regimen Elicits T Cell and Neutralizing Antibody Immune Responses. Journal of Virology, 2014, 88, 5502-5510.	1.5	59
24	Paracrine signals from liver sinusoidal endothelium regulate hepatitis C virus replication. Hepatology, 2014, 59, 375-384.	3.6	26
25	Hepatitis C virus kinetics after liver transplantation to study the role of a small molecule inhibitor of viral entry. Lancet, The, 2013, 381, S95.	6.3	1
26	Early infection events highlight the limited transmissibility of hepatitis C virus in vitro. Journal of Hepatology, 2013, 58, 1074-1080.	1.8	18
27	<i>In silico</i> directed mutagenesis identifies the <scp>CD</scp> 81/claudinâ€1 hepatitis <scp>C</scp> virus receptor interface. Cellular Microbiology, 2012, 14, 1892-1903.	1.1	35
28	Hepatitis C Virus Infects the Endothelial Cells of the Blood-Brain Barrier. Gastroenterology, 2012, 142, 634-643.e6.	0.6	203
29	A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration. Journal of Hepatology, 2012, 56, 803-809.	1.8	74
30	Hepatitis C Virus Induces CD81 and Claudin-1 Endocytosis. Journal of Virology, 2012, 86, 4305-4316.	1.5	110
31	Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission. Journal of Virology, 2011, 85, 596-605.	1.5	218
32	Structural characterization of CD81–Claudin-1 hepatitis C virus receptor complexes. Biochemical Society Transactions, 2011, 39, 537-540.	1.6	5
33	Claudin Association with CD81 Defines Hepatitis C Virus Entry. Journal of Biological Chemistry, 2010, 285, 21092-21102.	1.6	182
34	Hepatitis C Virus Infection Reduces Hepatocellular Polarity in a Vascular Endothelial Growth Factor–Dependent Manner. Gastroenterology, 2010, 138, 1134-1142.	0.6	73
35	Hepatitis C Virus Infection of Neuroepithelioma Cell Lines. Gastroenterology, 2010, 139, 1365-1374.e2.	0.6	59
36	Mutations in Hepatitis C Virus E2 Located outside the CD81 Binding Sites Lead to Escape from Broadly Neutralizing Antibodies but Compromise Virus Infectivity. Journal of Virology, 2009, 83, 6149-6160.	1.5	90

#	Article	IF	CITATIONS
37	Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells. Journal of Virology, 2009, 83, 6211-6221.	1.5	117
38	Hepatoma Cell Density Promotes Claudin-1 and Scavenger Receptor BI Expression and Hepatitis C Virus Internalization. Journal of Virology, 2009, 83, 12407-12414.	1.5	40
39	The complexities of hepatitis C virus entry. Journal of Hepatology, 2009, 51, 609-611.	1.8	8
40	Hepatitis C virus association with peripheral blood B lymphocytes potentiates viral infection of liver-derived hepatoma cells. Blood, 2009, 113, 585-593.	0.6	76
41	Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology, 2008, 47, 17-24.	3.6	315
42	Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology, 2008, 47, 418-427.	3.6	90
43	Hepatitis C Virus Entry and Neutralization. Clinics in Liver Disease, 2008, 12, 693-712.	1.0	43
44	Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity. Journal of Virology, 2008, 82, 8797-8811.	1.5	87
45	Identification of a Residue in Hepatitis C Virus E2 Glycoprotein That Determines Scavenger Receptor BI and CD81 Receptor Dependency and Sensitivity to Neutralizing Antibodies. Journal of Virology, 2008, 82, 12020-12029.	1.5	153
46	CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry. Journal of Virology, 2008, 82, 5007-5020.	1.5	170
47	Effect of Cell Polarization on Hepatitis C Virus Entry. Journal of Virology, 2008, 82, 461-470.	1.5	105
48	Scavenger Receptor BI and BII Expression Levels Modulate Hepatitis C Virus Infectivity. Journal of Virology, 2007, 81, 3162-3169.	1.5	139
49	Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine, 2007, 25, 7773-7784.	1.7	81
50	Hepatitis C Virus Continuously Escapes From Neutralizing Antibody and T-Cell Responses During Chronic Infection In Vivo. Gastroenterology, 2007, 132, 667-678.	0.6	372
51	Diverse CD81 Proteins Support Hepatitis C Virus Infection. Journal of Virology, 2006, 80, 11331-11342.	1.5	151
52	Blinded, Multicenter Comparison of Methods To Detect a Drug-Resistant Mutant of Human Immunodeficiency Virus Type 1 at Low Frequency. Journal of Clinical Microbiology, 2006, 44, 2612-2614.	1.8	104
53	Molecular Characterization of Human Immunodeficiency Virus Type 1 and Hepatitis C Virus in Paid Blood Donors and Injection Drug Users in China. Journal of Virology, 2004, 78, 13591-13599.	1.5	126
54	Disease Progression in Heterosexual Patients Infected with Closely Related Subtype B Strains of HIV Type 1 with Differing Coreceptor Usage Properties. AIDS Research and Human Retroviruses, 2004, 20, 365-371.	0.5	5

#	Article	IF	CITATIONS
55	Expansion of quasispecies diversity but no evidence for adaptive evolution of SHIV during rapid serial transfers among seronegative macaques. Virology, 2004, 318, 267-279.	1.1	16
56	Development of the antibody response in acute HIV-1 infection. Aids, 2004, 18, 371-381.	1.0	81
57	Origin of Human Immunodeficiency Virus Type 1 Quasispecies Emerging after Antiretroviral Treatment Interruption in Patients with Therapeutic Failure. Journal of Virology, 2002, 76, 7000-7009.	1.5	63
58	Sequence Specificity of the Human Immunodeficiency Virus Type 2 (HIV-2) Long Terminal Repeat U3 Regionin VivoAllows Subtyping of the Principal HIV-2 Viral Subtypes A and B. AIDS Research and Human Retroviruses, 2001, 17, 263-267.	0.5	23
59	Phylogenetic Analysis of Multiple Heterosexual Transmission Events Involving Subtype B of HIV Type 1. AIDS Research and Human Retroviruses, 2001, 17, 689-695.	0.5	12
60	Antigenic Variation within the CD4 Binding Site of Human Immunodeficiency Virus Type 1 gp120: Effects on Chemokine Receptor Utilization. Journal of Virology, 2001, 75, 5593-5603.	1.5	8
61	False-negative HIV antibody test results. , 2000, 60, 43-47.		16
62	The role of the viral glycoprotein in HIV-1 persistence. Immunology Letters, 1999, 65, 63-70.	1.1	5
63	A Human Monoclonal Antibody Specific for the V3 Loop of HIV Type 1 Clade E Cross-Reacts with Other HIV Type 1 Clades. AIDS Research and Human Retroviruses, 1998, 14, 213-221.	0.5	25
64	Chimeric Viruses Expressing Primary Envelope Glycoproteins of Human Immunodeficiency Virus Type I Show Increased Sensitivity to Neutralization by Human Sera. Virology, 1996, 220, 450-460.	1.1	25
65	HIV results in the frame. Nature, 1995, 375, 193-193.	13.7	50
66	Sequence Distances between env Genes of HIV-1 from Individuals Infected from the Same Source: Implications for the Investigation of Possible Transmission Events. Virology, 1995, 211, 198-203.	1.1	33
67	Cotransfection of HIV-1 Molecular Clones with Restricted Cell Tropism May Yield Progeny Virus with Altered Phenotype. AIDS Research and Human Retroviruses, 1993, 9, 321-329.	0.5	9
68	A statistical method for the detection of false positives and false negatives in microtitre format PCR assays. Journal of Virological Methods, 1992, 39, 69-82.	1.0	3
69	Molecular evolution and morphological speciation in North Atlantic brachiopods (<i>Terebratulina</i> spp.). Canadian Journal of Zoology, 1991, 69, 2903-2911.	0.4	13
70	Genetic hybrids of Plasmodium falciparum identified by amplification of genomic DNA from single oocysts. Molecular and Biochemical Parasitology, 1991, 49, 239-243.	0.5	64
71	Direct sequencing of enzymatically amplified DNA of alleles of the merozoite surface antigen MSA-1 gene from the malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology, 1991, 46, 185-187.	0.5	15