
Enrico L Rezende

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5385039/publications.pdf Version: 2024-02-01

ENDICO L REZENDE

#	Article	IF	CITATIONS
1	Thermal tolerance in <i>Drosophila</i> : Repercussions for distribution, community coexistence and responses to climate change. Journal of Animal Ecology, 2022, 91, 655-667.	1.3	7
2	Biological trade-offs underpin coral reef ecosystem functioning. Nature Ecology and Evolution, 2022, 6, 701-708.	3.4	18
3	Spatial and temporal shift in the factors affecting the population dynamics of Calanus copepods in the North Sea. Global Change Biology, 2021, 27, 576-586.	4.2	9
4	Heat tolerance in ectotherms scales predictably with body size. Nature Climate Change, 2021, 11, 58-63.	8.1	49
5	Body size variation in polyplacophoran molluscs: Geographical clines and community structure along the southâ€eastern Pacific. Global Ecology and Biogeography, 2021, 30, 1781-1795.	2.7	8
6	Heat Tolerance, Energetics, and Thermal Treatments of Honeybees Parasitized With Varroa. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
7	Heterothermy as the Norm, Homeothermy as the Exception: Variable Torpor Patterns in the South American Marsupial Monito del Monte (Dromiciops gliroides). Frontiers in Physiology, 2021, 12, 682394.	1.3	21
8	Divergence in Thermal Physiology Could Contribute to Vertical Segregation in Intertidal Ecotypes of Littorina saxatilis. Physiological and Biochemical Zoology, 2021, 94, 353-365.	0.6	3
9	Coral reef fishes reveal strong divergence in the prevalence of traits along the global diversity gradient. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211712.	1.2	6
10	Shrinking dinosaurs and the evolution of endothermy in birds. Science Advances, 2020, 6, eaaw4486.	4.7	32
11	Rapid within―and transgenerational changes in thermal tolerance and fitness in variable thermal landscapes. Ecology and Evolution, 2020, 10, 8105-8113.	0.8	10
12	Predicting temperature mortality and selection in natural <i>Drosophila</i> populations. Science, 2020, 369, 1242-1245.	6.0	85
13	Thermal effects vary predictably across levels of organization: empirical results and theoretical basis. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202508.	1.2	15
14	Climate Change and Thermoregulatory Consequences of Activity Time in Mammals. American Naturalist, 2020, 196, 45-56.	1.0	21
15	Energetic mechanisms for coping with changes in resource availability. Biology Letters, 2020, 16, 20200580.	1.0	13
16	Thermal performance across levels of biological organization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180549.	1.8	83
17	Doubleâ€blind peer review—An experiment. Functional Ecology, 2019, 33, 4-6.	1.7	8
18	Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Science Advances, 2019, 5, eaav2539.	4.7	49

#	ARTICLE	IF	CITATIONS
19	Sexual Selection and the Evolution of Male Reproductive Traits in Benthic Octopuses. Frontiers in Physiology, 2019, 10, 1238.	1.3	6
20	Body size, reef area and temperature predict global reefâ€fish species richness across spatial scales. Global Ecology and Biogeography, 2019, 28, 315-327.	2.7	37
21	Thermal strategies vary with life history stage. Journal of Experimental Biology, 2018, 221, .	0.8	45
22	Thorson's rule, lifeâ€history evolution, and diversification of benthic octopuses (Cephalopoda:) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 62

23	Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibianâ€killing chytrid fungus. Global Change Biology, 2017, 23, 3543-3553.	4.2	30
24	Winter is coming: Food web structure and seasonality in a subtropical freshwater coastal lake. Ecology and Evolution, 2017, 7, 4534-4542.	0.8	12
25	Resting vs. active: a metaâ€analysis of the intra―and interâ€specific associations between minimum, sustained, and maximum metabolic rates in vertebrates. Functional Ecology, 2017, 31, 1728-1738.	1.7	74
26	Quantitative Genetic Modeling of the Parental Care Hypothesis for the Evolution of Endothermy. Frontiers in Physiology, 2017, 8, 1005.	1.3	6
27	Introduced <i>Drosophila subobscura</i> populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability. Ecology and Evolution, 2016, 6, 1725-1736.	0.8	11
28	Ecological Influences and Morphological Correlates of Resting and Maximal Metabolic Rates across Teleost Fish Species. American Naturalist, 2016, 187, 592-606.	1.0	188
29	Thermal tolerance and climate warming sensitivity in tropical snails. Ecology and Evolution, 2015, 5, 5905-5919.	0.8	55
30	Heat tolerance in <i>Drosophila subobscura</i> along a latitudinal gradient: Contrasting patterns between plastic and genetic responses. Evolution; International Journal of Organic Evolution, 2015, 69, 2721-2734.	1.1	73
31	Thermoregulation in endotherms: physiological principles and ecological consequences. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 709-727.	0.7	58
32	The interactions between temperature and activity levels in driving metabolic rate: theory, with empirical validation from contrasting ectotherms. Oecologia, 2015, 177, 1117-1129.	0.9	54
33	Phylogenies and Stats: Putting Evolution into NumbersModern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. Edited by László Zsolt Garamszegi. Heidelberg: Springer, 2014. ISBN 978-3-662-43549-6 Physiological and Biochemical Zoology, 2015, 88, 586-587.	0.6	0
34	Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running. Experimental Physiology, 2014, 99, 403-413.	0.9	12
35	Tolerance landscapes in thermal ecology. Functional Ecology, 2014, 28, 799-809.	1.7	272
36	Biogeographic, historical and environmental influences on the taxonomic and functional structure of <scp>A</scp> tlantic reef fish assemblages. Global Ecology and Biogeography, 2013, 22, 1173-1182.	2.7	25

ENRICO L REZENDE

#	Article	lF	CITATIONS
37	Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. Journal of Experimental Biology, 2013, 216, 515-523.	0.8	51
38	Better Oxygen Delivery. Science, 2013, 340, 1293-1294.	6.0	6
39	Vanishing Chromosomal Inversion Clines in <i>Drosophila subobscura</i> from Chile: Is Behavioral Thermoregulation to Blame?. American Naturalist, 2013, 182, 249-259.	1.0	33
40	Comment on â€~Ecologically relevant measures of tolerance to potentially lethal temperatures'. Journal of Experimental Biology, 2012, 215, 702-703.	0.8	11
41	Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits?. Ecology and Evolution, 2012, 2, 2866-2880.	0.8	36
42	Measurement error in heat tolerance assays. Journal of Thermal Biology, 2012, 37, 432-437.	1.1	18
43	Phylogenetic Analyses: Comparing Species to Infer Adaptations and Physiological Mechanisms. , 2012, 2, 639-674.		96
44	On the reliability of visual communication in vertebrateâ€dispersed fruits. Journal of Ecology, 2012, 100, 277-286.	1.9	42
45	Hsp70 protein levels and thermotolerance in <i>Drosophila subobscura</i> : a reassessment of the thermal coâ€adaptation hypothesis. Journal of Evolutionary Biology, 2012, 25, 691-700.	0.8	41
46	The role of body mass in diet contiguity and food-web structure. Journal of Animal Ecology, 2011, 80, 632-639.	1.3	57
47	Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Functional Ecology, 2011, 25, 111-121.	1.7	214
48	Making sense of heat tolerance estimates in ectotherms: lessons from <i>Drosophila</i> . Functional Ecology, 2011, 25, 1169-1180.	1.7	91
49	Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecology and Evolution, 2011, 1, 15-25.	0.8	109
50	Faster returns on â€~leaf economics' and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 2010, 16, 2171-2185.	4.2	157
51	Genetic constraints for thermal coadaptation in Drosophila subobscura. BMC Evolutionary Biology, 2010, 10, 363.	3.2	27
52	CLINAL PATTERNS OF CHROMOSOMAL INVERSION POLYMORPHISMS IN <i>DROSOPHILA SUBOBSCURA</i> ARE PARTLY ASSOCIATED WITH THERMAL PREFERENCES AND HEAT STRESS RESISTANCE. Evolution; International Journal of Organic Evolution, 2010, 64, 385-397.	1.1	60
53	Contrasting patterns of phenotypic variation linked to chromosomal inversions in native and colonizing populations of <i>Drosophila subobscura</i> . Journal of Evolutionary Biology, 2010, 23, 112-123.	0.8	19
54	Climate change and chromosomal inversions in Drosophila subobscura. Climate Research, 2010, 43, 103-114.	0.4	55

ENRICO L REZENDE

#	Article	IF	CITATIONS
55	Running Behavior and Its Energy Cost in Mice Selectively Bred for High Voluntary Locomotor Activity. Physiological and Biochemical Zoology, 2009, 82, 662-679.	0.6	72
56	Cold acclimation in <i>Peromyscus</i> : individual variation and sex effects in maximum and daily metabolism, organ mass and body composition. Journal of Experimental Biology, 2009, 212, 2795-2802.	0.8	12
57	Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. Journal of Experimental Biology, 2009, 212, 238-248.	0.8	49
58	The evolution of jumping performance in anurans: morphological correlates and ecological implications. Journal of Evolutionary Biology, 2009, 22, 1088-1097.	0.8	97
59	Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters, 2009, 12, 779-788.	3.0	190
60	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	1.0	298
61	Development partly determines the aerobic performance of adult deer mice, Peromyscus maniculatus. Journal of Experimental Biology, 2008, 211, 35-41.	0.8	22
62	Leptin Levels and Body Composition of Mice Selectively Bred for High Voluntary Locomotor Activity. Physiological and Biochemical Zoology, 2007, 80, 568-579.	0.6	47
63	Baseline and Stressâ€Induced Plasma Corticosterone Concentrations of Mice Selectively Bred for High Voluntary Wheel Running. Physiological and Biochemical Zoology, 2007, 80, 146-156.	0.6	122
64	Deer Mouse Aerobic Performance across Altitudes: Effects of Developmental History and Temperature Acclimation. Physiological and Biochemical Zoology, 2007, 80, 652-662.	0.6	30
65	Non-random coextinctions in phylogenetically structured mutualistic networks. Nature, 2007, 448, 925-928.	13.7	470
66	Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 2007, 116, 1919-1929.	1.2	139
67	Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos, 2007, 116, 1919-1929.	1.2	4
68	Maximal oxygen consumption in relation to subordinate traits in lines of house mice selectively bred for high voluntary wheel running. Journal of Applied Physiology, 2006, 101, 477-485.	1.2	71
69	Renal morphology, phylogenetic history and desert adaptation of South American hystricognath rodents. Functional Ecology, 2006, 20, 609-620.	1.7	22
70	Effects of Size, Sex, and Voluntary Running Speeds on Costs of Locomotion in Lines of Laboratory Mice Selectively Bred for High Wheelâ€Running Activity. Physiological and Biochemical Zoology, 2006, 79, 83-99.	0.6	79
71	Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype. Journal of Experimental Biology, 2006, 209, 115-127.	0.8	75
72	An evolutionary frame of work to study physiological adaptation to high altitudes. Revista Chilena De Historia Natural, 2005, 78, 323.	0.5	13

ENRICO L REZENDE

#	Article	IF	CITATIONS
73	Contractile abilities of normal and "mini―triceps surae muscles from mice (Mus domesticus) selectively bred for high voluntary wheel running. Journal of Applied Physiology, 2005, 99, 1308-1316.	1.2	52
74	Maximal metabolic rates during voluntary exercise, forced exercise, and cold exposure in house mice selectively bred for high wheel-running. Journal of Experimental Biology, 2005, 208, 2447-2458.	0.8	81
75	Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 2005, 208, 3015-3035.	0.8	584
76	Cold-acclimation in Peromyscus: temporal effects and individual variation in maximum metabolism and ventilatory traits. Journal of Experimental Biology, 2004, 207, 295-305.	0.8	46
77	Voluntary running in deer mice: speed, distance, energy costs and temperature effects. Journal of Experimental Biology, 2004, 207, 3839-3854.	0.8	90
78	CLIMATIC ADAPTATION AND THE EVOLUTION OF BASAL AND MAXIMUM RATES OF METABOLISM IN RODENTS. Evolution; International Journal of Organic Evolution, 2004, 58, 1361.	1.1	12
79	CLIMATIC ADAPTATION AND THE EVOLUTION OF BASAL AND MAXIMUM RATES OF METABOLISM IN RODENTS. Evolution; International Journal of Organic Evolution, 2004, 58, 1361-1374.	1.1	179
80	ACTIVITY AND SPACE USE BY DEGUS: A TRADE-OFF BETWEEN THERMAL CONDITIONS AND FOOD AVAILABILITY?. Journal of Mammalogy, 2003, 84, 311-318.	0.6	53
81	Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. Journal of Arid Environments, 2003, 55, 63-74.	1.2	51
82	Age and aerobic performance in deer mice. Journal of Experimental Biology, 2003, 206, 1221-1231.	0.8	37
83	Dynamic Thermal Balance in the Leafâ€Eared Mouse: The Interplay among Ambient Temperature, Body Size, and Behavior. Physiological and Biochemical Zoology, 2002, 75, 396-404.	0.6	24
84	Passerines <i>versus</i> nonpasserines: so far, no statistical differences in the scaling of avian energetics. Journal of Experimental Biology, 2002, 205, 101-107.	0.8	95
85	Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics. Journal of Experimental Biology, 2002, 205, 101-7.	0.8	69
86	When Nonshivering Thermogenesis Equals Maximum Metabolic Rate: Thermal Acclimation and Phenotypic Plasticity of FossorialSpalacopus cyanus(Rodentia). Physiological and Biochemical Zoology, 2001, 74, 325-332.	0.6	65
87	Patterns of daily activity in the leaf-eared mouse (Phyllotis darwini): effects of food availability. Journal of Arid Environments, 2001, 47, 95-100.	1.2	13
88	Standard and Comparative Energetics of a Small Avian Herbivore (Phytotoma rara). Auk, 2001, 118, 781-785.	0.7	12
89	Does thermal history affect metabolic plasticity?: a study in three Phyllotis species along an altitudinal gradient. Journal of Thermal Biology, 2001, 26, 103-108.	1.1	17
90	The Role of Gastrolites on Feeding Behavior and Digestive Efficiency in the Rufous-Collared Sparrow. Condor, 2000, 102, 465-469.	0.7	3

#	Article	IF	CITATIONS
91	THE ROLE OF GASTROLITES ON FEEDING BEHAVIOR AND DIGESTIVE EFFICIENCY IN THE RUFOUS-COLLARED SPARROW. Condor, 2000, 102, 465.	0.7	3