Christian F Guerrero-Juarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5384885/publications.pdf

Version: 2024-02-01

25 papers 4,553 citations

430442 18 h-index 25 g-index

27 all docs

27 docs citations

times ranked

27

4915 citing authors

#	Article	IF	Citations
1	Lepr+ mesenchymal cells sense diet to modulate intestinal stem/progenitor cells via Leptin–lgf1 axis. Cell Research, 2022, 32, 670-686.	5.7	14
2	Targeting the PSGL-1 Immune Checkpoint Promotes Immunity to PD-1–Resistant Melanoma. Cancer Immunology Research, 2022, 10, 612-625.	1.6	12
3	Dormant Nfatc1 reporter-marked basal stem/progenitor cells contribute to mammary lobuloalveoli formation. IScience, 2022, 25, 103982.	1.9	2
4	Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. Science Advances, 2022, 8, .	4.7	16
5	Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Developmental Cell, 2022, 57, 1758-1775.e7.	3.1	25
6	Diet-induced obesity promotes infection by impairment of the innate antimicrobial defense function of dermal adipocyte progenitors. Science Translational Medicine, 2021, 13, .	5.8	25
7	Inference and analysis of cell-cell communication using CellChat. Nature Communications, 2021, 12, 1088.	5.8	2,174
8	Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Current Biology, 2021, 31, 2124-2139.e3.	1.8	30
9	Keratinocyte-Macrophage Crosstalk by the Nrf2/Ccl2/EGF Signaling Axis Orchestrates Tissue Repair. Cell Reports, 2020, 33, 108417.	2.9	40
10	YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Science Advances, 2020, 6, .	4.7	127
11	Cycling Stem Cells Are Radioresistant and Regenerate the Intestine. Cell Reports, 2020, 32, 107952.	2.9	37
12	Single cell transcriptomics of human epidermis identifies basal stem cell transition states. Nature Communications, 2020, 11, 4239.	5.8	112
13	Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. Science Advances, 2020, 6, eaay3704.	4.7	58
14	The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Research, 2020, 30, 854-872.	5.7	17
15	Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nature Communications, 2019, 10, 650.	5.8	345
16	A multiscale hybrid mathematical model of epidermalâ€dermal interactions during skin wound healing. Experimental Dermatology, 2019, 28, 493-502.	1.4	16
17	Age-Related Loss of Innate Immune Antimicrobial Function of Dermal Fat Is Mediated by Transforming Growth Factor Beta. Immunity, 2019, 50, 121-136.e5.	6.6	75
18	Wound Regeneration Deficit in Rats Correlates with Low Morphogenetic Potential and Distinct Transcriptome ProfileÂof Epidermis. Journal of Investigative Dermatology, 2018, 138, 1409-1419.	0.3	24

#	Article	IF	CITATIONS
19	Emerging nonmetabolic functions of skin fat. Nature Reviews Endocrinology, 2018, 14, 163-173.	4.3	67
20	Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metabolism, 2018, 27, 68-83.	7.2	298
21	Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355, 748-752.	6.0	434
22	Gli -fully Halting the Progression of Fibrosis. Cell Stem Cell, 2017, 20, 735-736.	5.2	7
23	Dermal adipocytes protect against invasive <i>Staphylococcus aureus</i> skin infection. Science, 2015, 347, 67-71.	6.0	368
24	Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations. Cell, 2015, 161, 277-290.	13.5	195
25	Hair Follicle Signaling Networks: A Dermal Papilla–Centric Approach. Journal of Investigative Dermatology, 2013, 133, 2306-2308.	0.3	30