
## Joung-Man Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5384618/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interfacial evaluation of modified Jute and Hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Composites Science and Technology, 2006, 66, 2686-2699. | 7.8  | 212       |
| 2  | Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO<br>and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability.<br>Journal of Colloid and Interface Science, 2003, 264, 431-445.        | 9.4  | 158       |
| 3  | Interfacial evaluation and durability of modified Jute fibers/polypropylene (PP) composites using micromechanical test and acoustic emission. Composites Part B: Engineering, 2008, 39, 1042-1061.                                                                      | 12.0 | 95        |
| 4  | Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique. Composites Part B: Engineering, 2007, 38, 847-861.                                                 | 12.0 | 91        |
| 5  | Effects of carbon nanotubes and carbon fiber reinforcements on thermal conductivity and ablation properties of carbon/phenolic composites. Composites Part B: Engineering, 2014, 67, 22-29.                                                                             | 12.0 | 90        |
| 6  | Frost formation and anti-icing performance of a hydrophobic coating on aluminum. Experimental<br>Thermal and Fluid Science, 2015, 60, 132-137.                                                                                                                          | 2.7  | 89        |
| 7  | A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by<br>means of the fragmentation and acoustic emission techniques. Composites Science and Technology,<br>1999, 59, 355-370.                                         | 7.8  | 86        |
| 8  | Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique. Materials Science and Engineering C, 2003, 23, 971-975.                                                                           | 7.3  | 86        |
| 9  | Mechanical and interfacial evaluation of CNT/polypropylene composites and monitoring of damage using electrical resistance measurements. Composites Science and Technology, 2013, 81, 69-75.                                                                            | 7.8  | 76        |
| 10 | Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO2 nanoparticles. Composites Part B: Engineering, 2017, 130, 46-53.                                                                                                  | 12.0 | 68        |
| 11 | Ablative and mechanical evaluation of CNT/phenolic composites by thermal and microstructural analyses. Composites Part B: Engineering, 2014, 60, 597-602.                                                                                                               | 12.0 | 64        |
| 12 | Electromagnetic interference shielding of composites consisting of a polyester matrix and carbon<br>nanotube-coated fiber reinforcement. Composites Part A: Applied Science and Manufacturing, 2013, 50,<br>73-80.                                                      | 7.6  | 53        |
| 13 | Interfacial evaluation of single Ramie and Kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission. Composite Interfaces, 2006, 13, 105-129.                                                                                 | 2.3  | 51        |
| 14 | Self-sensing of carbon fiber/carbon nanofiber–epoxy composites with two different nanofiber aspect<br>ratios investigated by electrical resistance and wettability measurements. Composites Part A: Applied<br>Science and Manufacturing, 2010, 41, 1702-1711.          | 7.6  | 48        |
| 15 | Self-sensing and dispersive evaluation of single carbon fiber/carbon nanotube (CNT)-epoxy composites using electro-micromechanical technique and nondestructive acoustic emission. Composites Part B: Engineering, 2008, 39, 1170-1182.                                 | 12.0 | 46        |
| 16 | Cure monitoring and residual stress sensing of single-carbon fiber reinforced epoxy composites using electrical resistivity measurement. Composites Science and Technology, 2005, 65, 571-580.                                                                          | 7.8  | 45        |
| 17 | Interfacial evaluation of carbon fiber/epoxy composites using electrical resistance measurements at room and a cryogenic temperature. Composites Part A: Applied Science and Manufacturing, 2015, 72, 160-166.                                                          | 7.6  | 45        |
| 18 | Interfacial Aspects of Electrodeposited Conductive Fibers/Epoxy Composites using<br>Electro-Micromechanical Technique and Nondestructive Evaluation. Journal of Colloid and Interface<br>Science, 2001, 237, 80-90.                                                     | 9.4  | 44        |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Comparison of interfacial adhesion of hybrid materials of aluminum/carbon fiber reinforced epoxy composites with different surface roughness. Composites Part B: Engineering, 2019, 170, 11-18.                                                             | 12.0 | 42        |
| 20 | Interfacial Aspects of Electrodeposited Carbon Fiber-Reinforced Epoxy Composites Using Monomeric and Polymeric Coupling Agents. Journal of Colloid and Interface Science, 2000, 231, 114-128.                                                               | 9.4  | 41        |
| 21 | Interfacial and hydrophobic evaluation of glass fiber/CNT–epoxy nanocomposites using<br>electro-micromechanical technique and wettability test. Composites Part A: Applied Science and<br>Manufacturing, 2009, 40, 1722-1731.                               | 7.6  | 41        |
| 22 | Effect of thermal treatment temperatures on the reinforcing and interfacial properties of recycled<br>carbon fiber–phenolic composites. Composites Part A: Applied Science and Manufacturing, 2013, 47,<br>156-164.                                         | 7.6  | 41        |
| 23 | Optimum dispersion conditions and interfacial modification of carbon fiber and CNT–phenolic<br>composites by atmospheric pressure plasma treatment. Composites Part B: Engineering, 2012, 43,<br>2272-2278.                                                 | 12.0 | 40        |
| 24 | Interfacial evaluation and microfailure mechanisms of single carbon fiber/bismaleimide (BMI)<br>composites by tensile and compressive fragmentation tests and acoustic emission. Composites Science<br>and Technology, 2002, 62, 743-756.                   | 7.8  | 39        |
| 25 | Actuation of electrochemical, electro-magnetic, and electro-active actuators for carbon nanofiber<br>and Ni nanowire reinforced polymer composites. Composites Part B: Engineering, 2008, 39, 1161-1169.                                                    | 12.0 | 39        |
| 26 | Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on GFRP composites.<br>Composites Science and Technology, 2017, 142, 98-106.                                                                                                   | 7.8  | 39        |
| 27 | Nondestructive sensing evaluation of surface modified single-carbon fiber reinforced epoxy composites by electrical resistivity measurement. Composites Part B: Engineering, 2006, 37, 612-626.                                                             | 12.0 | 36        |
| 28 | Interfacial Adhesion and Microfailure Modes of Electrodeposited Carbon Fiber/Epoxy–PEI Composites<br>by Microdroplet and Surface Wettability Tests. Journal of Colloid and Interface Science, 2002, 249,<br>62-77.                                          | 9.4  | 35        |
| 29 | Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micromechanical test and nondestructive acoustic emission. Composites Science and Technology, 2003, 63, 403-419.                     | 7.8  | 35        |
| 30 | The influence of crystallinity on interfacial properties of carbon and SiC<br>two-fiber/polyetheretherketone (PEEK) composites. Polymer Composites, 2000, 21, 789-797.                                                                                      | 4.6  | 32        |
| 31 | Damage sensing and fracture detection of CNT paste using electrical resistance measurements.<br>Composites Part B: Engineering, 2016, 90, 386-391.                                                                                                          | 12.0 | 31        |
| 32 | Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic<br>polypropylene composites using water-dispersible graft copolymer as a coupling agent. Polymer<br>Composites, 1996, 17, 375-383.                           | 4.6  | 30        |
| 33 | Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable<br>poly(p-dioxanone) fiber/poly(l-lactide) composites by micromechanical test and surface wettability.<br>Composites Science and Technology, 2004, 64, 847-860. | 7.8  | 30        |
| 34 | Review of self-sensing of damage and interfacial evaluation using electrical resistance measurements<br>in nano/micro carbon materials-reinforced composites. Advanced Composite Materials, 2015, 24,<br>197-219.                                           | 1.9  | 30        |
| 35 | Evaluation of dispersion and damage sensing of carbon fiber/polypropylene (PP)-polyamide (PA)<br>composites using 2 dimensional electrical resistance mapping. Composites Part A: Applied Science and<br>Manufacturing, 2016, 90, 417-423.                  | 7.6  | 30        |
| 36 | Interfacial durability and electrical properties of CNT or ITO/PVDF nanocomposites for self-sensor and micro actuator applications. Applied Surface Science, 2013, 287, 75-83.                                                                              | 6.1  | 29        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Interfacial evaluation of electrodeposited single carbon fiber/epoxy composites by fiber fracture source location using fragmentation test and acoustic emission. Composites Science and Technology, 2004, 64, 983-999.                    | 7.8  | 28        |
| 38 | Optimum mixing ratio of epoxy for glass fiber reinforced composites with high thermal stability.<br>Composites Part B: Engineering, 2015, 79, 132-137.                                                                                     | 12.0 | 27        |
| 39 | Detection of damage in cylindrical parts of carbon fiber/epoxy composites using electrical resistance<br>(ER) measurements. Composites Part B: Engineering, 2016, 99, 528-532.                                                             | 12.0 | 26        |
| 40 | Interfacial properties of glass fiber/brittle-ductile dual-matrix composites using micromechanical techniques and acoustic emission. Polymer Composites, 1999, 20, 19-28.                                                                  | 4.6  | 25        |
| 41 | Comparison of nondestructive microfailure evaluation of fiber-optic Bragg grating and acoustic emission piezoelectric sensors using fragmentation test. Composites Part A: Applied Science and Manufacturing, 2003, 34, 203-216.           | 7.6  | 24        |
| 42 | Self-sensing and interfacial evaluation of Ni nanowire/polymer composites using electro-micromechanical technique. Composites Science and Technology, 2007, 67, 2121-2134.                                                                 | 7.8  | 24        |
| 43 | Interfacial properties of two SiC fiber-reinforced polycarbonate composites using the fragmentation test and acoustic emission. Polymer Composites, 1998, 19, 747-758.                                                                     | 4.6  | 23        |
| 44 | A new method of evaluating the interfacial properties of composites by means of the gradual multi-fiber fragmentation test. Composites Science and Technology, 2000, 60, 439-450.                                                          | 7.8  | 23        |
| 45 | Comparison of Interfacial Properties of Electrodeposited Single Carbon Fiber/Epoxy Composites Using<br>Tensile and Compressive Fragmentation Tests and Acoustic Emission. Journal of Colloid and Interface<br>Science, 2002, 247, 231-245. | 9.4  | 23        |
| 46 | Interfacial evaluation and self-sensing on residual stress and microfailure of toughened carbon<br>fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites. Composites Part B: Engineering,<br>2007, 38, 833-846.                | 12.0 | 23        |
| 47 | The evaluation of the interfacial and flame retardant properties of glass fiber/unsaturated polyester composites with ammonium dihydrogen phosphate. Composites Part B: Engineering, 2019, 167, 221-230.                                   | 12.0 | 22        |
| 48 | Thermal transfer, interfacial, and mechanical properties of carbon fiber/polycarbonate-CNT composites using infrared thermography. Polymer Testing, 2020, 81, 106247.                                                                      | 4.8  | 22        |
| 49 | Interfacial Properties of Two-Carbon Fiber Reinforced Polycarbonate Composites Using<br>Two-Synthesized Graft Copolymers as Coupling Agents. Journal of Colloid and Interface Science, 2000,<br>225, 384-393.                              | 9.4  | 21        |
| 50 | Interfacial, fire retardancy, and thermal stability evaluation of graphite oxide (GO)-phenolic<br>composites with different GO particle sizes. Composites Part B: Engineering, 2013, 53, 290-296.                                          | 12.0 | 21        |
| 51 | Optimized epoxy foam interface of CFRP/Epoxy Foam/CFRP sandwich composites for improving compressive and impact properties. Journal of Materials Research and Technology, 2021, 11, 62-71.                                                 | 5.8  | 21        |
| 52 | Damage sensing, mechanical and interfacial properties of resins suitable for new CFRP rope for elevator applications. Composites Part B: Engineering, 2019, 157, 259-265.                                                                  | 12.0 | 20        |
| 53 | Electrical properties of transparent CNT and ITO coatings on PET substrate including nano-structural aspects. Solid-State Electronics, 2013, 79, 147-151.                                                                                  | 1.4  | 19        |
| 54 | Reinforcing effects of glass fiber/p-DCPD with fiber concentrations, types, lengths and surface treatment. Composites Part B: Engineering, 2017, 123, 74-80.                                                                               | 12.0 | 19        |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Interfacial properties and permeability of three patterned glass fiber/epoxy composites by VARTM.<br>Composites Part B: Engineering, 2018, 148, 61-67.                                                                                 | 12.0 | 19        |
| 56 | Investigation of Interfacial and Mechanical Properties of Various Thermally-Recycled Carbon<br>Fibers/Recycled PET Composites. Fibers and Polymers, 2018, 19, 1767-1775.                                                               | 2.1  | 18        |
| 57 | Evaluation of interfacial properties of atmospheric pressure plasma-treated CNT-phenolic composites by dual matrix fragmentation and acoustic emission tests. Composites Part A: Applied Science and Manufacturing, 2013, 52, 151-158. | 7.6  | 17        |
| 58 | Interfacial and mechanical properties of epoxy composites containing carbon nanotubes grafted with<br>alkyl chains of different length. Composites Part A: Applied Science and Manufacturing, 2016, 82,<br>190-197.                    | 7.6  | 17        |
| 59 | The change in mechanical and interfacial properties of GF and CF reinforced epoxy composites after aging in NaCl solution. Composites Science and Technology, 2016, 122, 59-66.                                                        | 7.8  | 17        |
| 60 | Interfacial and wetting properties between glass fiber and epoxy resins with different pot lifes.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 68-77.                                               | 4.7  | 16        |
| 61 | Load transfer from fiber to polymer matrix, studied by measuring the apparent elastic modulus of carbon fiber embedded in epoxy. Composite Interfaces, 2001, 8, 435-441.                                                               | 2.3  | 15        |
| 62 | Interfacial properties and self-sensing of single carbon fiber reinforced CNT-phenolic<br>nanocomposites using electro-micromechanical and wettability tests. Composites Part B: Engineering,<br>2012, 43, 1171-1177.                  | 12.0 | 15        |
| 63 | Characterization of cure reactions of anhydride/epoxy/polyetherimide blends. Polymer International, 2002, 51, 1353-1360.                                                                                                               | 3.1  | 14        |
| 64 | Inherent and interfacial evaluations of carbon nanotubes/epoxy composites and single carbon fiber at different temperatures. Composites Part B: Engineering, 2016, 91, 111-118.                                                        | 12.0 | 14        |
| 65 | Mechanical and electrical properties of electrospun CNT/PVDF nanofiber for micro-actuator applications. Advanced Composite Materials, 2016, 25, 305-316.                                                                               | 1.9  | 14        |
| 66 | Evaluation of interfacial and mechanical properties of glass fiber and p-DCPD composites with surface treatment of glass fiber. Composites Part B: Engineering, 2018, 153, 420-428.                                                    | 12.0 | 14        |
| 67 | Mechanical properties of norbornene-based silane treated glass fiber reinforced<br>polydicyclopentadiene composites manufactured by the S-RIM process. E-Polymers, 2017, 17, 159-166.                                                  | 3.0  | 13        |
| 68 | Interfacial durability and acoustical properties of transparent graphene nano platelets/poly<br>(vinylidene fluoride) composite actuators. Thin Solid Films, 2013, 539, 350-355.                                                       | 1.8  | 12        |
| 69 | New method for interfacial evaluation of carbon fiber/thermosetting composites by wetting and electrical resistance measurements. Journal of Adhesion Science and Technology, 2014, 28, 1677-1686.                                     | 2.6  | 12        |
| 70 | Comparison of mechanical and interfacial properties of kenaf fiber before and after rice-washed water treatment. Composites Part B: Engineering, 2015, 83, 21-26.                                                                      | 12.0 | 12        |
| 71 | Modeling of Multi-Autocatalytic Cure Reactions of An Epoxy/Amine Terminated Polyetherimide/NMA<br>System. Polymer Bulletin, 2003, 51, 167-174.                                                                                         | 3.3  | 11        |
| 72 | Surface control and cryogenic durability of transparent CNT coatings on dip-coated glass substrates.<br>Journal of Colloid and Interface Science, 2012, 386, 415-420.                                                                  | 9.4  | 11        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Interfacial Evaluation and Self-Sensing of Single Micro-Carbon Fiber/CNF–Brittle-Cement Composites<br>using Electro-Micromechanical Tests and Acoustic Emission. Advanced Composite Materials, 2011, 20,<br>149-168.                    | 1.9  | 10        |
| 74 | Improvement in mechanical properties of recycled GF prepreg with CNT reinforced composites using a spray coating method. Advanced Composite Materials, 2016, 25, 515-524.                                                               | 1.9  | 10        |
| 75 | New evaluation of interfacial properties and damage sensing in CFRC by VARTM using 3D ER mapping.<br>Composites Part B: Engineering, 2018, 155, 178-186.                                                                                | 12.0 | 10        |
| 76 | Evaluation of thermally-aged carbon fiber/epoxy composites using acoustic emission, electrical resistance and thermogram. Composite Structures, 2018, 196, 21-29.                                                                       | 5.8  | 10        |
| 77 | Evaluation of dispersion of MWCNT/cellulose composites sheet using electrical resistance 3D-mapping for strain sensing. Functional Composites and Structures, 2020, 2, 025004.                                                          | 3.4  | 10        |
| 78 | Dispersion and Related Properties of Acid-Treated Carbon Nanotube/Epoxy Composites using<br>Electro-Micromechanical, Surface Wetting and Single Carbon Fiber Sensor Tests. Advanced Composite<br>Materials, 2011, 20, 337-360.          | 1.9  | 9         |
| 79 | Interfacial and wetting properties of carbon fiber reinforced epoxy composites with different hardeners by electrical resistance measurement. Polymer Testing, 2016, 53, 293-298.                                                       | 4.8  | 9         |
| 80 | Evaluation of optimal dispersion conditions for CNT reinforced epoxy composites using cyclic voltammetry measurements. Advanced Composite Materials, 2017, 26, 219-227.                                                                 | 1.9  | 9         |
| 81 | 2D electrical resistance (ER) mapping to Detect damage for carbon fiber reinforced polyamide composites under tensile and flexure loading. Composites Science and Technology, 2021, 201, 108480.                                        | 7.8  | 9         |
| 82 | To improve interfacial and mechanical properties of carbon fiber–modified nano-SiC–epoxy<br>composites using dispersion and wetting control. Advanced Composite Materials, 2015, 24, 1-12.                                              | 1.9  | 8         |
| 83 | Advanced interfacial properties of glass fiber/dopamine-epoxy composites using a microdroplet pull-out test and acoustic emission. Journal of Adhesion, 2021, 97, 438-455.                                                              | 3.0  | 8         |
| 84 | Evaluation of interfacial properties and microfailure mechanisms in single fiberâ€reinforced epoxy composites at low temperature. Polymer Composites, 2012, 33, 147-157.                                                                | 4.6  | 7         |
| 85 | A new strategy of carbon fiber reinforced plastic drilling evaluation using thermal measurement.<br>Journal of Composite Materials, 2013, 47, 2005-2011.                                                                                | 2.4  | 7         |
| 86 | A Review: Mechanical and Interfacial Properties of Composites after Diverse Types of Aging Using Micromechanical Evaluation. Fibers and Polymers, 2020, 21, 225-237.                                                                    | 2.1  | 7         |
| 87 | Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding<br>Nano SiC Fillers. Adhesion and Interface, 2013, 14, 75-81.                                                                           | 0.3  | 7         |
| 88 | Improvement of interlaminar properties of carbon fiber-reinforced epoxy composites using aluminum<br>trihydroxide. Carbon Letters, 2019, 29, 183-191.                                                                                   | 5.9  | 6         |
| 89 | Interfacial and Microfailure Evaluation of Modified Single Fiber–Brittle Cement Matrix Composites<br>Using an Electro-Micromechanical Technique and Acoustic Emission. Journal of Colloid and Interface<br>Science, 2001, 244, 410-422. | 9.4  | 5         |
| 90 | Evaluation of Interfacial and Mechanical Properties of Glass Fiber/Poly-Dicyclopentadiene Composites<br>with Different Post Curing at Ambient and Low Temperatures. Fibers and Polymers, 2018, 19, 1989-1996.                           | 2.1  | 5         |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | New evaluation of interfacial and mechanical properties of thermally- treated Pine/CFRP composites using electrical resistance measurement. Composites Part B: Engineering, 2018, 151, 139-147.                                                          | 12.0 | 5         |
| 92  | Interfacial and Mechanical Properties of Carbon Fiber Reinforced Polycarbonate (PC) Film and PC Fiber<br>Impregnated Composites. Fibers and Polymers, 2019, 20, 2400-2406.                                                                               | 2.1  | 5         |
| 93  | Novel method of electrical resistance measurement in structural composite materials for interfacial and dispersion evaluation with nano- and hetero-structures. Materials Research Society Symposia Proceedings, 2014, 1700, 37-46.                      | 0.1  | 4         |
| 94  | Preparation and Characterization of Electrospun Poly(ethylene oxide) (PEO) Nanofibers-reinforced<br>Epoxy Matrix Composites. Materials Research Society Symposia Proceedings, 2004, 851, 29.                                                             | 0.1  | 3         |
| 95  | Evaluation of surface roughness and frost retardancy of a glass fiber/unsaturated polyester composite. International Journal of Heat and Mass Transfer, 2019, 130, 282-289.                                                                              | 4.8  | 3         |
| 96  | Prediction Method of Dispersion Condition for Reinforced Epoxy in Nano SiC Particles Using Capacitance Measurement. Composites Research, 2013, 26, 337-342.                                                                                              | 0.1  | 3         |
| 97  | Interfacial adhesion evaluation <i>via</i> wettability for fiber reinforced polymer composites: A review. Composite Interfaces, 2023, 30, 283-299.                                                                                                       | 2.3  | 3         |
| 98  | Stress and Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-micromechanical Technique. Advanced Composite Materials, 2010, 19, 139-155.                                                                              | 1.9  | 2         |
| 99  | Evaluation of interfacial, dispersion, and thermal properties of carbon Fiber/ABC added epoxy composites manufactured by VARTM and RFI methods. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106660.                                 | 7.6  | 2         |
| 100 | Prediction of Wetting and Interfacial Property of CNT Reinforced Epoxy on CF Tow Using Electrical Resistance Method. Composites Research, 2015, 28, 232-238.                                                                                             | 0.1  | 2         |
| 101 | Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator. Journal of the Korean Society for Composite Materials, 2011, 24, 12-17.                                                           | 0.3  | 2         |
| 102 | Interfacial, electrical, and mechanical properties of MWCNT in polyurethane nanocomposite coating<br>via 2D electrical resistance mapping for aircraft topcoat. Progress in Organic Coatings, 2022, 163,<br>106667.                                      | 3.9  | 2         |
| 103 | Nondestructive Damage Sensitivity and Reinforcing Effect of Functionalized Carbon Nanotube and<br>Nanofiber/Epoxy Composites Using Electro-Micromechanical Techniques. Materials Research Society<br>Symposia Proceedings, 2004, 851, 200.               | 0.1  | 1         |
| 104 | Evaluation of thermally-aged carbon fiber/epoxy composites using acoustic emission, electrical resistance, contact angle and thermogram. , 2018, , .                                                                                                     |      | 1         |
| 105 | Dispersive Evaluation and Self-Sensing of Single Carbon Fiber/CNT-Epoxy Composites using<br>Electro-Micromechanical Techniques. Materials Research Society Symposia Proceedings, 2008, 1075, 1.                                                          | 0.1  | 0         |
| 106 | Optoelectronic and Interfacial Properties of CNT and ITO on Borosilicate Glass and PET Substrates<br>with Nano- and Hetero-structural Aspects. Materials Research Society Symposia Proceedings, 2010,<br>1258, 1.                                        | 0.1  | 0         |
| 107 | Evaluation of surface control and durability of carbon nanotube and indium tin oxide coated polyethylene terephthalate transparent electrodes under different drying conditions. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2012, 11, 023010-1. | 0.9  | 0         |
| 108 | Innovation of Pencil Lead Drawn Paper Sensors (PLDPS) Using Electrical Resistance (ER) Measurement:<br>I. Optimal Conditions of Interfacial, Mechanical, and Sensing Properties. Fibers and Polymers, 2020, 21,<br>1560-1565.                            | 2.1  | 0         |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Innovation of Pencil Lead Drawn Paper Sensors (PLDPS) Using Electrical Resistance (ER) Measurement:<br>II. Load, Micro-Damage, and Thermal Sensing on Composites by PLDPS. Fibers and Polymers, 2020, 21,<br>1566-1572.   | 2.1 | 0         |
| 110 | Stretchable calix[4] areneâ€based gels by induction of water. Journal of Applied Polymer Science, 2021, 138, 51235.                                                                                                       | 2.6 | 0         |
| 111 | Optimum Mixing Ratio of Epoxy for Glass Fiber Reinforced Composites with High Thermal Stability.<br>Composites Research, 2014, 27, 168-173.                                                                               | 0.1 | Ο         |
| 112 | Innovative Ru Catalyst Adopting for Improving Interfacial and Mechanical Properties on CF Fabric Reinforced ENB Composites. Fibers and Polymers, 0, , .                                                                   | 2.1 | 0         |
| 113 | Innovative wicking and interfacial evaluation of carbon fiber (CF)/Epoxy composites by CF tow capillary glass tube method (TCGTM) with Tripe-CF fragmentation test. Composites Science and Technology, 2022, 225, 109495. | 7.8 | 0         |